Publications

41 Results
Skip to search filters

Incorporating the effects of objects in an approximate model of light transport in scattering media

Optics Letters

Bentz, Brian Z.; Pattyn, Christian A.; Vander Laan, John D.; Redman, Brian J.; Glen, Andrew G.; Sanchez, A.L.; Westlake, Karl W.; Wright, Jeremy B.

A computationally efficient radiative transport model is presented that predicts a camera measurement and accounts for the light reflected and blocked by an object in a scattering medium. The model is in good agreement with experimental data acquired at the Sandia National Laboratory Fog Chamber Facility (SNLFC). The model is applicable in computational imaging to detect, localize, and image objects hidden in scattering media. Here, a statistical approach was implemented to study object detection limits in fog.

More Details

Data Fusion of Very High Resolution Hyperspectral and Polarimetric SAR Imagery for Terrain Classification

West, Roger D.; Yocky, David A.; Vander Laan, John D.; Anderson, Dylan Z.; Redman, Brian J.

Performing terrain classification with data from heterogeneous imaging modalities is a very challenging problem. The challenge is further compounded by very high spatial resolution. (In this paper we consider very high spatial resolution to be much less than a meter.) At very high resolution many additional complications arise, such as geometric differences in imaging modalities and heightened pixel-by-pixel variability due to inhomogeneity within terrain classes. In this paper we consider the fusion of very high resolution hyperspectral imaging (HSI) and polarimetric synthetic aperture radar (PolSAR) data. We introduce a framework that utilizes the probabilistic feature fusion (PFF) one-class classifier for data fusion and demonstrate the effect of making pixelwise, superpixel, and pixelwise voting (within a superpixel) terrain classification decisions. We show that fusing imaging modality data sets, combined with pixelwise voting within the spatial extent of superpixels, gives a robust terrain classification framework that gives a good balance between quantitative and qualitative results.

More Details

Light transport with weak angular dependence in fog

Optics Express

Bentz, Brian Z.; Redman, Brian J.; Vander Laan, John D.; Westlake, Karl W.; Glen, Andrew G.; Sanchez, A.L.; Wright, Jeremy B.

Random scattering and absorption of light by tiny particles in aerosols, like fog, reduce situational awareness and cause unacceptable down-time for critical systems or operations. Computationally efficient light transport models are desired for computational imaging to improve remote sensing capabilities in degraded optical environments. To this end, we have developed a model based on a weak angular dependence approximation to the Boltzmann or radiative transfer equation that appears to be applicable in both the moderate and highly scattering regimes, thereby covering the applicability domain of both the small angle and diffusion approximations. An analytic solution was derived and validated using experimental data acquired at the Sandia National Laboratory Fog Chamber facility. The evolution of the fog particle density and size distribution were measured and used to determine macroscopic absorption and scattering properties using Mie theory. A three-band (0.532, 1.55, and 9.68 μm) transmissometer with lock-in amplifiers enabled changes in fog density of over an order of magnitude to be measured due to the increased transmission at higher wavelengths, covering both the moderate and highly scattering regimes. The meteorological optical range parameter is shown to be about 0.6 times the transport mean free path length, suggesting an improved physical interpretation of this parameter.

More Details

Optical and Polarimetric SAR Data Fusion Terrain Classification Using Probabilistic Feature Fusion

International Geoscience and Remote Sensing Symposium (IGARSS)

West, Roger D.; Yocky, David A.; Redman, Brian J.; Vander Laan, John D.; Anderson, Dylan Z.

Deciding on an imaging modality for terrain classification can be a challenging problem. For some terrain classes a given sensing modality may discriminate well, but may not have the same performance on other classes that a different sensor may be able to easily separate. The most effective terrain classification will utilize the abilities of multiple sensing modalities. The challenge of utilizing multiple sensing modalities is then determining how to combine the information in a meaningful and useful way. In this paper, we introduce a framework for effectively combining data from optical and polarimetric synthetic aperture radar sensing modalities. We demonstrate the fusion framework for two vegetation classes and two ground classes and show that fusing data from both imaging modalities has the potential to improve terrain classification from either modality, alone.

More Details

Performance evaluation of two optical architectures for task-specific compressive classification

Optical Engineering

Redman, Brian J.; Dagel, Amber L.; Galiardi, Meghan A.; LaCasse, Charles F.; Quach, Tu-Thach Q.; Birch, Gabriel C.

Many optical systems are used for specific tasks such as classification. Of these systems, the majority are designed to maximize image quality for human observers. However, machine learning classification algorithms do not require the same data representation used by humans. We investigate the compressive optical systems optimized for a specific machine sensing task. Two compressive optical architectures are examined: an array of prisms and neutral density filters where each prism and neutral density filter pair realizes one datum from an optimized compressive sensing matrix, and another architecture using conventional optics to image the aperture onto the detector, a prism array to divide the aperture, and a pixelated attenuation mask in the intermediate image plane. We discuss the design, simulation, and trade-offs of these systems built for compressed classification of the Modified National Institute of Standards and Technology dataset. Both architectures achieve classification accuracies within 3% of the optimized sensing matrix for compression ranging from 98.85% to 99.87%. The performance of the systems with 98.85% compression were between an F / 2 and F / 4 imaging system in the presence of noise.

More Details

Towards computational imaging for intelligence in highly scattering aerosols

Proceedings of SPIE - The International Society for Optical Engineering

Bentz, Brian Z.; Redman, Brian J.; Vander Laan, John D.; Westlake, Karl W.; Glen, Andrew; Sanchez, A.L.; Wright, Jeremy B.

This communication reports progress towards the development of computational sensing and imaging methods that utilize highly scattered light to extract information at greater depths in degraded visual environments like fog for improved situational awareness. As light propagates through fog, information is lost due to random scattering and absorption by micrometer sized water droplets. Computational diffuse optical imaging shows promise for interpreting the detected scattered light, enabling greater depth penetration than current methods. Developing this capability requires verification and validation of diffusion models of light propagation in fog. We report models that were developed and compared to experimental data captured at the Sandia National Laboratory Fog Chamber facility. The diffusion approximation to the radiative transfer equation was found to predict light propagation in fog under the appropriate conditions.

More Details

Robust terrain classification of high spatial resolution remote sensing data employing probabilistic feature fusion and pixelwise voting

Proceedings of SPIE - The International Society for Optical Engineering

West, Roger D.; Redman, Brian J.; Yocky, David A.; Vander Laan, John D.; Anderson, Dylan Z.

There are several factors that should be considered for robust terrain classification. We address the issue of high pixel-wise variability within terrain classes from remote sensing modalities, when the spatial resolution is less than one meter. Our proposed method segments an image into superpixels, makes terrain classification decisions on the pixels within each superpixel using the probabilistic feature fusion (PFF) classifier, then makes a superpixel-level terrain classification decision by the majority vote of the pixels within the superpixel. We show that this method leads to improved terrain classification decisions. We demonstrate our method on optical, hyperspectral, and polarimetric synthetic aperture radar data.

More Details

Optimizing a Compressive Imager for Machine Learning Tasks

Conference Record - Asilomar Conference on Signals, Systems and Computers

Redman, Brian J.; Calzada, Daniel; Wingo, Jamie; Quach, Tu-Thach Q.; Galiardi, Meghan; Dagel, Amber L.; LaCasse, Charles F.; Birch, Gabriel C.

Images are often not the optimal data form to perform machine learning tasks such as scene classification. Compressive classification can reduce the size, weight, and power of a system by selecting the minimum information while maximizing classification accuracy.In this work we present designs and simulations of prism arrays which realize sensing matrices using a monolithic element. The sensing matrix is optimized using a neural network architecture to maximize classification accuracy of the MNIST dataset while considering the blurring caused by the size of each prism. Simulated optical hardware performance for a range of prism sizes are reported.

More Details

Characterization of 3D printed computational imaging element for use in task-specific compressive classification

Proceedings of SPIE - The International Society for Optical Engineering

Birch, Gabriel C.; Redman, Brian J.; Dagel, Amber L.; Kaehr, Bryan J.; Dagel, Daryl D.; LaCasse, Charles F.; Quach, Tu-Thach Q.; Galiardi, Meghan

We investigate the feasibility of additively manufacturing optical components to accomplish task-specific classification in a computational imaging device. We report on the design, fabrication, and characterization of a non-traditional optical element that physically realizes an extremely compressed, optimized sensing matrix. The compression is achieved by designing an optical element that only samples the regions of object space most relevant to the classification algorithms, as determined by machine learning algorithms. The design process for the proposed optical element converts the optimal sensing matrix to a refractive surface composed of a minimized set of non-repeating, unique prisms. The optical elements are 3D printed using a Nanoscribe, which uses two-photon polymerization for high-precision printing. We describe the design of several computational imaging prototype elements. We characterize these components, including surface topography, surface roughness, and angle of prism facets of the as-fabricated elements.

More Details

Task-specific computational refractive element via two-photon additive manufacturing

Optics InfoBase Conference Papers

Redman, Brian J.; Dagel, Amber L.; Kaehr, Bryan; LaCasse, Charles F.; Birch, Gabriel C.; Quach, Tu-Thach Q.; Galiardi, Meghan A.

We report on the design and fabrication of a computational imaging element used within a compressive task-specific imaging system. Fabrication via two-photon 3D printing is reported, as well as characterization of the fabricated element.

More Details

Hyperspectral vegetation identification at a legacy underground nuclear explosion test site

Proceedings of SPIE - The International Society for Optical Engineering

Redman, Brian J.; Vander Laan, John D.; Anderson, Dylan Z.; Craven, Julia M.; Miller, Elizabeth D.; Collins, Adam D.; Swanson, Erika M.; Schultz-Fellenz, Emily S.

The detection, location, and identification of suspected underground nuclear explosions (UNEs) are global security priorities that rely on integrated analysis of multiple data modalities for uncertainty reduction in event analysis. Vegetation disturbances may provide complementary signatures that can confirm or build on the observables produced by prompt sensing techniques such as seismic or radionuclide monitoring networks. For instance, the emergence of non-native species in an area may be indicative of anthropogenic activity or changes in vegetation health may reflect changes in the site conditions resulting from an underground explosion. Previously, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of visible and near-infrared wavebands over 4.3 km2 of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. In this work, we employ various spectral detection and classification algorithms to identify and map vegetation species in an area of interest containing the legacy test site. We employed a frequentist framework for fusing multiple spectral detections across various reference spectra captured at different times and sampled from multiple locations. The spatial distribution of vegetation species is compared to the location of the underground nuclear explosion. We find a difference in species abundance within a 130 m radius of the center of the test site.

More Details

Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

Proceedings of SPIE - The International Society for Optical Engineering

LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

More Details
41 Results
41 Results