Publications

Results 1–50 of 56

Search results

Jump to search filters

Using Component-Based TPA to Translate Vibration Environments Between Versions of the Round-Robin Structure with FRFs Derived from Analytical Models

Conference Proceedings of the Society for Experimental Mechanics Series

Carter, Steven P.; Owens, Brian

This chapter will show the results of a study where component-based transfer path analysis was used to translate vibration environments between versions of the round-robin structure. This was done to evaluate a hybrid approach where the responses were measured experimentally, but the frequency response functions were derived analytically. This work will describe the test setup, force estimation process, response prediction (on the new system), and show comparisons between the predicted and measured responses. Observations will also be made on the applicability of this hybrid approach in more complex systems.

More Details

Analysis of full-field response from a multi-shaker test

Conference Proceedings of the Society for Experimental Mechanics Series

Foulk, James W.; Owens, Brian; Schultz, Ryan

Multi-shaker testing is used to represent the response of a structure to a complex operational load in a laboratory setting. One promising method of multi-shaker testing is Impedance Matched Multi-Axis Testing (IMMAT). IMMAT targets responses at discrete measurement points to control the multiple shaker input excitations, resulting in a laboratory response representative of the expected operational response at the controlled measurement points. However, the relationship between full-field operational responses and the full-field IMMAT response has not been thoroughly explored. Poorly chosen excitation positions may match operational responses at the control points, but over or under excite uncontrolled regions of the structure. Additionally, the effectiveness of the IMMAT method on the whole test structure could depend on the type of operational excitation. Spatially distributed excitations, such as acoustic loading, may be difficult to reproduce over the whole test structure in a lab setting using the point force IMMAT excitations. This work will simulate operational and IMMAT responses of a lab-scale structure to analyze the accuracy of IMMAT at uncontrolled regions of the structure. Determination of the effect of control locations and operational locations on the IMMAT method will lead to better test design and improved predictive capabilities.

More Details

Combined mechanical environments for design and qualification

Conference Proceedings of the Society for Experimental Mechanics Series

Owens, Brian; Harvie, Julie M.

Aerospace systems and components are designed and qualified against several operational environments. Some of these environments are climatic, mechanical, and electrical in nature. Traditionally, mechanical test specifications are derived with the goal of qualifying a system or component to a suite of independent mechanical environments in series. True operational environments, however, are composed of complex, combined events. This work examines the effect of combined mechanical shock and vibration environments on response of a dynamic system. Responses under combined environments are compared to those under single environments, and the adequacy/limitations of conventional, single environment test approaches (shock only or vibration only) will be assessed. Test integration strategies for combined shock and vibration environments are also discussed.

More Details

Design Studies for Deep-Water Floating Offshore Vertical Axis Wind Turbines

Griffith, D.T.; Barone, Matthew F.; Paquette, Joshua A.; Owens, Brian; Bull, Diana L.; Simao-Ferriera, Carlos; Goupee, Andrew; Fowler, Matt

Deep-water offshore sites are an untapped opportunity to bring large-scale offshore wind energy to coastal population centers. The primary challenge has been the projected high costs for floating offshore wind systems. This work presents a comprehensive investigation of a new opportunity for deep-water offshore wind using large-scale vertical axis wind turbines. Owing to inherent features of this technology, there is a potential transformational opportunity to address the major cost drivers for floating wind using vertical axis wind turbines. The focus of this report is to evaluate the technical potential for this new technology. The approach to evaluating this potential was to perform system design studies focused on improving the understanding of technical performance parameters while looking for cost reduction opportunities. VAWT design codes were developed in order to perform these design studies. To gain a better understanding of the design space for floating VAWT systems, a comprehensive design study of multiple rotor configuration options was carried out. Floating platforms and moorings were then sized and evaluated for each of the candidate rotor configurations. Preliminary LCOE estimates and LCOE ranges were produced based on the design study results for each of the major turbine and system components. The major outcomes of this study are a comprehensive technology assessment of VAWT performance and preliminary LCOE estimates that demonstrate that floating VAWTs may have favorable performance and costs in comparison to conventional HAWTs in the deep-water offshore environment where floating systems are required, indicating that this new technology warrants further study.

More Details

Nonlinear finite element model updating, part I: Experimental techniques and nonlinear modal model parameter extraction

Conference Proceedings of the Society for Experimental Mechanics Series

Pacini, Benjamin R.; Mayes, Randall L.; Owens, Brian; Schultz, Ryan

Linear structural dynamic models are often used to support system design and qualification. Overall, linear models provide an efficient means for conducting design studies and augmenting test data by recovering un-instrumented or unmeasurable quantities (e.g. stress). Nevertheless, the use of linear models often adds significant conservatism in design and qualification programs by failing to capture critical mechanisms for energy dissipation. Unfortunately, the use of explicit nonlinear models can require unacceptably large efforts in model development and experimental characterization to account for common nonlinearities such as frictional interfaces, macro-slip, and other complex material behavior. The computational requirements are also greater by orders of magnitude. Conversely, modal models are much more computationally efficient and experimentally have shown the ability to capture typical structural nonlinearity. Thus, this work will seek to use modal nonlinear identification techniques to improve the predictive capability of a finite element structural dynamics model. Part I of this paper discusses the experimental aspects of this work. Linear natural frequencies, damping values, and mode shapes are extracted from low excitation level testing. Subsequently, the structure is excited with high level user-defined shaker inputs. The corresponding response data are modally filtered and fit with nonlinear elements to create the nonlinear pseudo-modal model. This is then used to simulate the measured response from a high level excitation experiment which utilized a different type of input. The nonlinear model is then employed in a reduced order, generalized structural dynamics model as discussed in Part II.

More Details

Nonlinear finite element model updating, part II: Implementation and simulation

Conference Proceedings of the Society for Experimental Mechanics Series

Owens, Brian; Schultz, Ryan; Pacini, Benjamin R.; Mayes, Randall L.

Linear structural dynamic models are often used to support system design and qualification. Overall, linear models provide an efficient means for conducting design studies and augmenting test data by recovering un-instrumented or unmeasurable quantities (e.g. stress). Nevertheless, the use of linear models often adds significant conservatism in design and qualification programs by failing to capture critical mechanisms for energy dissipation. Unfortunately, the use of explicit nonlinear models can require unacceptably large efforts in model development and experimental characterization to account for common nonlinearities such as frictional interfaces, macro-slip, and other complex material behavior. The computational requirements are also greater by orders of magnitude. Conversely, modal models are much more computationally efficient and experimentally have shown the ability to capture typical structural nonlinearity. Thus, this work will seek to use modal nonlinear identification techniques to improve the predictive capability of a finite element structural dynamics model. Part I of this paper discussed experimental aspects of this work. Part II will consider use of nonlinear modal models in finite element modeling. First, the basic theory and numerical implementation is discussed. Next, the linear structural dynamic model of a configuration of interest is presented and model updating procedures are discussed. Finally, verification exercises are presented for a high level excitation using test data and simulated predictions from a structural dynamics model augmented with models obtained in nonlinear identification efforts.

More Details
Results 1–50 of 56
Results 1–50 of 56