Publications

8 Results
Skip to search filters

A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator

ASME 2010 4th International Conference on Energy Sustainability, ES 2010

Andraka, Charles E.; Yellowhair, Julius; Iverson, Brian D.

Dish concentrators can produce highly concentrated flux for the operation of an engine, a chemical process, or other energy converter. The high concentration allows a small aperture to control thermal losses, and permits high temperature processes at the focal point. A variety of optical errors can influence the flux pattern both at the aperture and at the absorber surface. Impacts of these errors can be lost energy (intercept losses), aperture compromise (increased size to accommodate flux), high peak fluxes (leading to part failure or life reduction), and improperly positioned flux also leading to component failure. Optical errors can include small scale facet errors ("waviness"), facet shape errors, alignment (facet pointing) errors, structural deflections, and tracking errors. The errors may be random in nature, or may be systematic. The various sources of errors are often combined in a "root-mean-squared" process to present a single number as an "error budget". However, this approach ignores the fact that various errors can influence the performance in different ways, and can mislead the designer, leading to component damage in a system or poor system performance. In this paper, we model a hypothetical radial gore dish system using Sandia's CIRCE2 optical code. We evaluate the peak flux and incident power through the aperture and onto various parts of the receiver cavity. We explore the impact of different error sources on the character of the flux pattern, and demonstrate the limitations of lumping all of the errors into a single error budget. © 2010 by ASME.

More Details

Freeze-thaw tests of trough receivers employing a molten salt working fluid

Ho, Clifford K.; Iverson, Brian D.; Moss, Timothy A.; Siegel, Nathan P.

Several studies predict an economic benefit of using nitrate-based salts instead of the current synthetic oil within a solar parabolic trough field. However, the expected economic benefit can only be realized if the reliability and optical performance of the salt trough system is comparable to today's oil trough. Of primary concern is whether a salt-freeze accident and subsequent thaw will lead to damage of the heat collection elements (HCEs). This topic was investigated by experiments and analytical analysis. Results to date suggest that damage will not occur if the HCEs are not completely filled with salt. However, if the HCE is completely filled at the time of the freeze, the subsequent thaw can lead to plastic deformation and significant bending of the absorber tube.

More Details
8 Results
8 Results