Publications

10 Results
Skip to search filters

Ellipsoidal Fitting Methodology for Defect Clusters in Gallium Arsenide

Hehr, Brian D.

In assessing the initial spatial distribution of defects from neutron or heavy ion irradiation, it is useful to have a reliable, automated, and fast-running tool to evaluate characteristic metrics such as the number of sub-clusters or the overall cluster volume. The latter metric, for instance, can be utilized to estimate a reference neutron fluence level at which inter-cluster interaction effects begin to become significant. This paper details a methodology to fit an arbitrarily complex defect map with a set of ellipsoids (one per identified sub-cluster) in which the constituent defects of a sub-cluster are determined using fuzzy degree-of-membership analysis. Specifically, a parameterized model is developed for point defects in gallium arsenide. Cluster volume calculations based on the model are compared against convex hull and single- ellipsoid representations. Results show that the parameterized sub-cluster model begins to deviate from the two reference models at a recoil energy of about 100 keV in GaAs, with the convex hull and single-ellipsoid representations increasingly overestimating the volume thereafter.

More Details

Photocurrent from single collision 14-MeV neutrons in GaN and GaAs

IEEE Transactions on Nuclear Science

Jasica, Matthew J.; Wampler, William R.; Vizkelethy, Gyorgy V.; Hehr, Brian D.; Bielejec, Edward S.

Accurate predictions of device performance in 14-MeV neutron environments rely upon understanding the recoil cascades that may be produced. Recoils from 14-MeV neutrons impinging on both gallium nitride (GaN) and gallium arsenide (GaAs) devices were modeled and compared to the recoil spectra of devices exposed to 14-MeV neutrons. Recoil spectra were generated using nuclear reaction modeling programs and converted into an ionizing energy loss (IEL) spectrum. We measured the recoil IEL spectra by capturing the photocurrent pulses produced by single neutron interactions with the device. Good agreement, with a factor of two, was found between the model and the experiment under strongly depleted conditions. However, this range of agreement between the model and the experiment decreased significantly when the bias was removed, indicating partial energy deposition due to cascades that escape the active volume of the device not captured by the model. Consistent event rates across multiple detectors confirm the reliability of our neutron recoil detection method.

More Details

Partitioning of Ionization and Displacement Kerma in Material Response Functions

Hehr, Brian D.

Calculations of total dose (relatable to heating) and ionizing dose (relatable to electron - hole pair formation) typically rely u pon material kerma response functions and an assumption of charged particle equilibrium . Traditionally, kerma functions designed for use wit h the Sandia ASC NuGET code were created via the HEATR module of the NJOY code system, in which a simplifying monoatomic assumption in made. The purpose of this study is to relax that approximation through the use of binary collision simulation techniques , which can take into account the co - existence of multiple elements in a material. Specifically, the total, ionization, and displacement components of kerma are evaluated in silicon, gallium arsenide, gallium nitride, and i ndium phosphide using the TRIM and MARLOWE codes , and are compared against the equivalent NJOY - based functions . Based on the results, a binary collision - based method ology is proposed for extracting the partial kerma components of high - importance materials.

More Details

Analysis of radiation effects in silicon using kinetic monte carlo methods

IEEE Transactions on Nuclear Science

Hehr, Brian D.

The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) 'Blue Room' facility. The results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.

More Details

LDRD Report : Analysis of Defect Clustering in Semiconductors using Kinetic Monte Carlo Methods

Hehr, Brian D.

The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. Following the development of a set of verification tests, the code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos LANSCE "Blue Room" facility. The results reveal that KMC calculations agree well with experiment once adjustments are made to significant defect parameters within the appropriate uncertainty bounds.

More Details
10 Results
10 Results