Wavelet-based algorithm for correction of beam-steering artefacts in turbulent flow imaging at elevated pressures
Experiments in Fluids
Abstract: Beam steering by index-of-refraction gradients poses a significant challenge for laser-based imaging measurements in turbulent reacting and non-reacting flows, particularly at elevated pressures. High fidelity imaging and quantitative data interpretation in turbulent flows can be considerably impeded by artefacts generated from beam steering. A wavelet-based filtering scheme has been developed to recover the underlying turbulent flow structures from imaging measurements containing severe beam-steering artefacts. This analysis technique is equally applicable to imaging measurements in reacting and non-reacting flows. It is demonstrated using mixture fraction measurements in a transient turbulent jet flow at 8 bar using Rayleigh scattering imaging at a repetition rate of 100 kHz. The corrected images reveal the temporal evolution of flow structures with negligible residual beam-steering artefacts. Tests of the sensitivity of the wavelet-based filtering scheme to noise and spatial resolution indicate that it is a robust analytic tool for correcting severe beam-steering artefacts commonly encountered in laser-based imaging measurements at elevated pressures. Graphic abstract: [Figure not available: see fulltext.].