Publications

Results 1–25 of 124
Skip to search filters

Rethinking scaling laws in the high-cycle fatigue response of nanostructured and coarse-grained metals

International Journal of Fatigue

Heckman, Nathan H.; Padilla, Henry A.; Michael, Joseph R.; Barr, Christopher M.; Clark, Blythe C.; Hattar, Khalid M.; Boyce, Brad B.

The high-cycle fatigue life of nanocrystalline and ultrafine-grained Ni-Fe was examined for five distinct grain sizes ranging from approximately 50–600 nm. The fatigue properties were strongly dependent on grain size, with the endurance limit changing by a factor of 4 over this narrow range of grain size. The dataset suggests a breakdown in fatigue improvement for the smallest grain sizes <100 nm, likely associated with a transition to grain coarsening as a dominant rate-limiting mechanism. The dataset also is used to explore fatigue prediction from monotonic tensile properties, suggesting that a characteristic flow strength is more meaningful than the widely-utilized ultimate tensile strength.

More Details

Mitigating Implicit Bias as a Leader

JOM. Journal of the Minerals, Metals & Materials Society

Clark, Blythe C.; Jackson, Olivia D.

Bias. It’s a word that makes most of us squirm. Bias implies to us that we are “bad people” and are being accused of deliberately discriminating against others. Yet, if you ask a social scientist, you will find that it doesn't mean that at all; implicit bias is a neurologically based, energy-saving short cut. Our brains apply mental models to make thousands of quick decisions every day: which brand of milk to buy at the store or when to turn the wheel to avoid a traffic accident. Lastly, we form our implicit biases subconsciously over time, influenced by our upbringing, societal norms, and life experiences.

More Details

Achieving Ultralow Wear with Stable Nanocrystalline Metals

Advanced Materials

Curry, John C.; Babuska, Tomas F.; Furnish, Timothy A.; Lu, Ping L.; Adams, David P.; Kustas, Andrew K.; Nation, Brendan L.; Dugger, Michael T.; Chandross, M.; Clark, Blythe C.; Boyce, Brad B.; Schuh, Christopher A.; Argibay, Nicolas A.

Recent work suggests that thermally stable nanocrystallinity in metals is achievable in several binary alloys by modifying grain boundary energies via solute segregation. The remarkable thermal stability of these alloys has been demonstrated in recent reports, with many alloys exhibiting negligible grain growth during prolonged exposure to near-melting temperatures. Pt–Au, a proposed stable alloy consisting of two noble metals, is shown to exhibit extraordinary resistance to wear. Ultralow wear rates, less than a monolayer of material removed per sliding pass, are measured for Pt–Au thin films at a maximum Hertz contact stress of up to 1.1 GPa. This is the first instance of an all-metallic material exhibiting a specific wear rate on the order of 10−9 mm3 N−1 m−1, comparable to diamond-like carbon (DLC) and sapphire. Remarkably, the wear rate of sapphire and silicon nitride probes used in wear experiments are either higher or comparable to that of the Pt–Au alloy, despite the substantially higher hardness of the ceramic probe materials. High-resolution microscopy shows negligible surface microstructural evolution in the wear tracks after 100k sliding passes. Mitigation of fatigue-driven delamination enables a transition to wear by atomic attrition, a regime previously limited to highly wear-resistant materials such as DLC.

More Details

Do voids nucleate at grain boundaries during ductile rupture?

Acta Materialia

Noell, Philip N.; Carroll, Jay D.; Hattar, Khalid M.; Clark, Blythe C.; Boyce, Brad B.

In the absence of pre-existing failure-critical defects, the fracture or tearing process in deformable metals loaded in tension begins with the nucleation of internal cavities or voids in regions of elevated triaxial stress. While ductile rupture processes initiate at inclusions or precipitates in many alloys, nucleation in pure metals is often assumed to be associated with grain boundaries or triple junctions. This study presents ex situ observations of incipient, subsurface void nucleation in pure tantalum during interrupted uniaxial tensile tests using electron channeling contrast (ECC) imaging, electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). Instead of forming at grain boundaries, voids initiated at and grew along dislocation cell and cell block boundaries created by plastic deformation. Most of the voids were associated with extended, lamellar deformation-induced boundaries that run along the traces of the {110} or {112} planes, though a few voids initiated at low-angle dislocation subgrain boundaries. In general, a high density of deformation-induced boundaries was observed near the voids. TEM and TKD demonstrate that voids initiate at and grow along cell block boundaries. Two mechanisms for void nucleation in pure metals, vacancy condensation and stored energy dissipation, are discussed in light of these results. The observations of the present investigation suggest that voids in pure materials nucleate by vacancy condensation and subsequently grow by consuming dislocations.

More Details

Degradation of superconducting Nb/NbN films by atmospheric oxidation

IEEE Transactions on Applied Superconductivity

Henry, Michael D.; Wolfley, Steven L.; Young, Travis R.; Monson, Todd M.; Pearce, Charles J.; Lewis, Rupert; Clark, Blythe C.; Brunke, Lyle B.; Missert, Nancy A.

Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

More Details

Mechanisms for Ductile Rupture - FY16 ESC Progress Report

Boyce, Brad B.; Carroll, Jay D.; Noell, Philip N.; Bufford, Daniel C.; Clark, Blythe C.; Hattar, Khalid M.; Lim, Hojun L.; Battaile, Corbett C.

Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimental evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.

More Details

Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior

Scripta Materialia

Argibay, Nicolas A.; Furnish, Timothy A.; Boyce, B.L.; Clark, Blythe C.; Chandross, M.

The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. This interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.

More Details

Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

JOM

Clark, Blythe C.; Hattar, K.; Marshall, M.T.; Chookajorn, T.; Boyce, B.L.; Schuh, C.A.

The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

More Details
Results 1–25 of 124
Results 1–25 of 124