Sandia National Laboratories has tested and evaluated a new version of the Chaparral 64S infrasound sensor, designed and manufactured by Chaparral Physics. The purpose of this infrasound sensor evaluation is to measure the performance characteristics in such areas as power consumption, sensitivity, full scale, self-noise, dynamic range, response, passband, sensitivity variation due to changes in barometric pressure and temperature, and sensitivity to acceleration. The Chaparral 64S infrasound sensors are being evaluated for use in the International Monitoring System (IMS) of the Preparatory Commission to the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated an updated version of the MB3a infrasound sensor, designed by CEA and manufactured by SeismoWave. The purpose of this infrasound sensor evaluation is to measure the performance characteristics in such areas as power consumption, sensitivity, full scale, self-noise, dynamic range, response, passband, sensitivity variation due to changes in barometric pressure and temperature, and sensitivity to acceleration. The MB3a infrasound sensors are being evaluated for use in the International Monitoring System (IMS) of the Preparatory Commission to the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated the performance of the following five models of low-cost infrasound sensors and sensor packages: Camas microphone, Gem Infrasound Logger, InfraBSU sensor, Raspberry Boom, and the Samsung S10 smartphone utilizing the Redvox app. The purpose of this infrasound sensor evaluation is to measure the performance characteristics in such areas as power consumption, sensitivity, self-noise, dynamic range, response, passband, linearity, sensitivity variation due to changes in static pressure and temperature, and sensitivity to vertical acceleration. The infrasound monitoring community has leveraged such sensors and integrated packages in novel ways; better understanding the performance of these units serves the geophysical monitoring community.
Sandia National Laboratories has performed testing on several Hyperion 5313A infrasound sensors in order to determine the length of time it takes for the sensors to thermally equilibrate under a variety of environmental conditions. The motivation for performing these tests is to aid in determining suitable procedures for station operators to follow when installing these sensors. The desired outcome is for the station operators to be able to determine more quickly and reliably whether the sensors are performing correctly at the time of installation.
Sandia National Laboratories has tested and evaluated two Nanometrics Centaur digitizers. The Centaur digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Centaur digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated a digitizer, the SMART24B, manufactured by Geotech Instruments, LLC. These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMART24B is Geotech's datalogger intended for borehole deployment in their digitizer product line. The SMART24B is available with either 3 or 6 channels at 24 bit resolution. The digitizer is to be deployed in boreholes, therefore are a minimum number of connections required on the digitizer case as datalogger utilizes a distribution panel, mounted up-hole, serving to breakout power, GPS, serial communications and ethernet connections.
Sandia National Laboratories has tested and evaluated a new digitizer, the Affinity, manufactured by Guralp Systems Ltd. These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizer is Guralp's latest release in their digitizer product line. The Affinity is available with either 4 or 8 channels at 24 bit resolution. In addition to the 24 bit channels, 16 multiplexed low resolution channels are provided. Other features include the means to accept multiple types of timing sources (e.g. GPS, NTP and PTP) and a web page interface for command and control of the unit.
Sandia National Laboratories has tested and evaluated a new digitizer, the Q330HR , manufactured by Quanterra . These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation wa s to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self - noise, dynamic range, system noise, r esponse, passband, and timing. The Q330HR is Quanterra ' s improved Q330 datalogger with a 2 6 bit s of resolution on channels 1 - 3 and a 24 bits of resolution on channels 4 - 6 (26 bit is optional ). The Quanterra Q330HR is being evaluated for potential use U.S. Air Force seismic monitoring systems as part of their Next Generation Qualification effort .
Sandia National Laboratories has tested and evaluated a new digitizer, the Centaur , manufactured by Nanometrics . These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self - noise, dynamic range, system noise, r esponse, passband, and timing. The Centaur digitizer is Nano metrics ' replacement for their Taurus digitizer and marks Nanometrics first 6 channel, 24 bit resolution system. Other improvements include LED status indicators on the top of the unit, providing basic status of the core systems of a seismic station (e.g. timing, sensor SOH, storage, etc), an optional wifi system allowing password protected access to the unit and a web interface for monitoring and configuration of the unit. The Nanometrics Centaur is being evaluated for potential use U.S. Air Force seismic monitoring systems as part of their Next Generation Qualification effort .
Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
The Seismo - Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production seismometers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the seismometers is being conducted at the Pinon Flats Observatory (PFO) , supervised by Sandia National Laboratories, U.S Navy, and RP Kromer Consulting. SNL will conduct evaluation of the collected seismometer data and comment on the performance of the seismometers.
Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.
Sandia National Laboratories has tested and evaluated two seismometers, the STS-5A, manufactured by Kinemetrics. These seismometers measure three axes of broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self-noise, dynamic range, and self-calibration ability. The Kinemetrics STS-5A seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.
Sandia National Laboratories has tested and evaluated a new preamplifier, the Guralp Preamplifier for GS13, manufactured by Guralp. These preamplifiers are used to interface between Guralp digitizers and Geotech GS13 Seismometers. The purpose of the preamplifier evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Guralp GS13 Preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hz for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).
The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.
Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.