Publications

3 Results
Skip to search filters

IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration (Final Report)

Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit C.; Korkali, Mert K.; Sun, Chih-Che S.; Donadee, Jonathan D.; Stewart, Emma M.; Donde, Vaibhav D.; Peppanen, Jouni P.; Hernandez, Miguel H.; Deboever, Jeremiah D.; Rocha, Celso R.; Rylander, Matthew R.; Siratarnsophon, Piyapath S.; Grijalva, Santiago G.; Talkington, Samuel T.; Gomez-Peces, Cristian G.; Mason, Karl M.; Vejdan, Sadegh V.; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya A.; Divan, Deepak D.; Li, Feng L.; Therrien, Francis T.; Jacques, Patrick J.; Rao, Vittal S.; Francis, Cody F.; Zaragoza, Nicholas Z.; Nordy, David N.; Glass, Jim G.

This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.

More Details

Parameter tuning analysis for phase identification algorithms in distribution system model calibration

2021 IEEE Kansas Power and Energy Conference, KPEC 2021

Pena, Bethany D.; Blakely, Logan; Reno, Matthew J.

The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.

More Details
3 Results
3 Results