Publications

Results 1–25 of 58
Skip to search filters

Multiscale XCT Scans to Study Damage Mechanism in Syntactic Foam

Conference Proceedings of the Society for Experimental Mechanics Series

Jin, Helena; Croom, Brendan; Mills, Bernice E.; Li, Xiaodong; Carroll, Jay D.; Long, Kevin N.; Brown, Judith

In this work, we applied the in-situ X-ray Computed Tomography (XCT) mechanical testing method that coupled the in-situ mechanical loading with the XCT imaging to study the damage mechanism of GMBs inside the Sylgard as the material was subject to mechanical loading. We studied Sylgard specimens with different volume fraction of GMBs to understand how they behave differently under compression loading and how the volume fraction of GMBs affect the Sylgard failure. Both high resolution (1.5 μm/voxel) and low resolution (10 μm/voxel) XCT imaging were performed at different loading levels to visualize the GMB collapse during the compression of Sylgard with different volume fraction of GMBs. Feret shape of GMBs were calculated from the high resolution XCT images to determine whether the GMBs were intact or fractured, as well as the relationship between the size distribution of GMBs and their Feret shapes. Through these quantitative analysis of the high resolution XCT data, we were able to understand how the size and volume fraction of GMBs affect their failure behavior. The Digital volume correlation (DVC) technique was applied to the low resolution XCT images to calculate the local deformation of Sylgard specimen, which enabled us to understand the different failure propagation and failure mechanisms of Sylgard with different volume fraction of GMBs.

More Details

Electroless deposition of palladium on macroscopic 3D-printed polymers with dense microlattice architectures for development of multifunctional composite materials

Journal of the Electrochemical Society

Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; Robinson, David R.

A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. The ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.

More Details
Results 1–25 of 58
Results 1–25 of 58