Publications

23 Results
Skip to search filters

Ductile failure X-prize

Boyce, Brad B.; Foulk, James W.; Littlewood, David J.; Mota, Alejandro M.; Ostien, Jakob O.; Silling, Stewart A.; Spencer, Benjamin S.; Wellman, Gerald W.; Bishop, Joseph E.; Brown, Arthur B.; Córdova, Theresa E.; Cox, James C.; Crenshaw, Thomas B.; Dion, Kristin D.; Emery, John M.

Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

More Details

Presto 4.20 user's guide : addendum for shock capabilities

Spencer, Benjamin S.

This is an addendum to the Presto 4.20 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Presto. Presto{_}ITAR is an enhanced version of Presto that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Presto User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

More Details

Adagio 4.20 User’s Guide

Spencer, Benjamin S.

Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.

More Details

Adagio 4.18 user's guide

Spencer, Benjamin S.

Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.

More Details

Presto 4.18 user's guide

Spencer, Benjamin S.

Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versatile element library that incorporates both continuum elements and structural elements. This user's guide describes the input for Presto that gives users access to all the current functionality in the code. The environment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment. The user's guide describes how scope is implemented from the outermost to the innermost scopes. Within a given scope, the descriptions of input commands are grouped based on functionality of the code. For example, all material input command lines are described in a chapter of the user's guide for all the material models that can be used in Presto.

More Details

Adagio 4.16 users guide

Spencer, Benjamin S.

Adagio is a three-dimensional, implicit solid mechanics code with a versatile element library, nonlinear material models, and capabilities for modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. The Adagio 4.16 User's Guide provides information about the functionality in Adagio and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Adagio is similar to that of the code Presto [3]. Presto, like Adagio, is a solid mechanics code built on the SIERRA Framework. The primary difference between the two codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio is an implicit code. Because of the similarities in input and usage between Adagio and Presto, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Presto may be found in the Adagio user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio have contact functionality, the content of the chapter on contact in the two guides differs. Important references for both Adagio and Presto are given in the references section at the end of this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4; JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is described in References 6 and 7. Some of the fundamental nonlinear technology used by both Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio use the Exodus II database and the XDMF database; Exodus II is more commonly used than XDMF. (Other options may be added in the future.) The Exodus II database format is described in Reference 11, and the XDMF database format is described in Reference 12. Important information about contact is provided in the reference document for ACME [13]. ACME is a third-party library for contact. One of the key concepts for the command structure in the input file is a concept referred to as scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in Chapter 2 are related to a certain scope rather than to some particular functionality.

More Details

Presto 4.16 users guide

Spencer, Benjamin S.

Presto is a three-dimensional transient dynamics code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. Contact capabilities are parallel and scalable. The Presto 4.16 User's Guide provides information about the functionality in Presto and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-dimensional quasi-static code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1]. Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is that it offers a multilevel, nonlinear iterative solver. Because of the similarities in input and usage between Presto and Adagio, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Adagio may be found in the Presto user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio have contact functionality, the content of the chapter on contact in the two guides differs. Important references for both Adagio and Presto are given in the references section at the end of this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4; JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is described in References 6 and 7. Some of the fundamental nonlinear technology used by both Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio use the Exodus II database and the XDMF database; Exodus II is more commonly used than XDMF. (Other options may be added in the future.) The Exodus II database format is described in Reference 11, and the XDMF database format is described in Reference 12. Important information about contact is provided in the reference document for ACME [13]. ACME is a third-party library for contact. One of the key concepts for the command structure in the input file is a concept referred to as scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in Chapter 2 are related to a certain scope rather than to some particular functionality.

More Details

Presto 4.14 users guide

Spencer, Benjamin S.

Presto is a three-dimensional transient dynamics code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. Contact capabilities are parallel and scalable. The Presto 4.14 User's Guide provides information about the functionality in Presto and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-dimensional quasi-static code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1]. Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is that it offers a multilevel, nonlinear iterative solver. Because of the similarities in input and usage between Presto and Adagio, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Adagio may be found in the Presto user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio have contact functionality, the content of the chapter on contact in the two guides differs. Important references for both Adagio and Presto are given in the references section at the end of this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4; JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is described in References 6 and 7. Some of the fundamental nonlinear technology used by both Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio use the Exodus II database and the XDMF database; Exodus II is more commonly used than XDMF. (Other options may be added in the future.) The Exodus II database format is described in Reference 11, and the XDMF database format is described in Reference 12. Important information about contact is provided in the reference document for ACME [13]. ACME is a third-party library for contact. One of the key concepts for the command structure in the input file is a concept referred to as scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in Chapter 2 are related to a certain scope rather than to some particular functionality.

More Details

Adagio 4.14 users guide

Spencer, Benjamin S.

This document is a user's guide for the code Adagio. Adagio is a three-dimensional, implicit solid mechanics code with a versatile element library, nonlinear material models, and capabilities for modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. The Adagio 4.14 User's Guide provides information about the functionality in Adagio and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Adagio is similar to that of the code Presto [3]. Presto, like Adagio, is a solid mechanics code built on the SIERRA Framework. The primary difference between the two codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio is an implicit code. Because of the similarities in input and usage between Adagio and Presto, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Presto may be found in the Adagio user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio have contact functionality, the content of the chapter on contact in the two guides differs. Important references for both Adagio and Presto are given in the references section at the end of this chapter. Adagio was preceded by the codes JAC and JAS3D; JAC is described in Reference 4; JAS3D is described in Reference 5. Presto was preceded by the code Pronto3D. Pronto3D is described in References 6 and 7. Some of the fundamental nonlinear technology used by both Presto and Adagio are described in References 8, 9, and 10. Currently, both Presto and Adagio use the Exodus II database and the XDMF database; Exodus II is more commonly used than XDMF. (Other options may be added in the future.) The Exodus II database format is described in Reference 11, and the XDMF database format is described in Reference 12. Important information about contact is provided in the reference document for ACME [13]. ACME is a third-party library for contact. One of the key concepts for the command structure in the input file is a concept referred to as scope. A detailed explanation of scope is provided in Section 1.2. Most of the command lines in Chapter 2 are related to a certain scope rather than to some particular functionality.

More Details
23 Results
23 Results