Publications

Results 1–25 of 120
Skip to search filters

Sizing Energy Storage to Aid Wind Power Generation: Inertial Support and Variability Mitigation

IEEE Power and Energy Society General Meeting

Bera, Atri; Nguyen, Tu A.; Chalamala, Babu C.; Mitra, Joydeep

Variable energy resources (VERs) like wind and solar are the future of electricity generation as we gradually phase out fossil fuel due to environmental concerns. Nations across the globe are also making significant strides in integrating VERs into their power grids as we strive toward a greener future. However, integration of VERs leads to several challenges due to their variable nature and low inertia characteristics. In this paper, we discuss the hurdles faced by the power grid due to high penetration of wind power generation and how energy storage system (ESSs) can be used at the grid-level to overcome these hurdles. We propose a new planning strategy using which ESSs can be sized appropriately to provide inertial support as well as aid in variability mitigation, thus minimizing load curtailment. A probabilistic framework is developed for this purpose, which takes into consideration the outage of generators and the replacement of conventional units with wind farms. Wind speed is modeled using an autoregressive moving average technique. The efficacy of the proposed methodology is demonstrated on the WSCC 9-bus test system.

More Details

Dissipativity-based Voltage Control in Distribution Grids

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Kosaraju, K.C.; Ye, Lintao; Gupta, Vijay; Trevizan, Rodrigo D.; Chalamala, Babu C.; Byrne, Raymond H.

We consider the problem of decentralized control of reactive power provisioned by distributed energy resources for voltage support in the distribution grid. We assume that the reactance matrix of the grid is unknown and potentially time-varying. We present conditions for stability of the system when the reactive power at each inverter is set using a potentially heterogeneous droop curve. These conditions utilize energy dissipation requirements and can be naturally satisfied even when the reactance matrix is unknown by using an adaptive controller and when the reactance matrix is time-varying.

More Details

Cyberphysical Security of Grid Battery Energy Storage Systems

IEEE Access

Trevizan, Rodrigo D.; Obert, James O.; De Angelis, Valerio D.; Nguyen, Tu A.; Rao, Vittal S.; Chalamala, Babu C.

This paper presents a literature review on current practices and trends on cyberphysical security of grid-connected battery energy storage systems (BESSs). Energy storage is critical to the operation of Smart Grids powered by intermittent renewable energy resources. To achieve this goal, utility-scale and consumer-scale BESS will have to be fully integrated into power systems operations, providing ancillary services and performing functions to improve grid reliability, balance power and demand, among others. This vision of the future power grid will only become a reality if BESS are able to operate in a coordinated way with other grid entities, thus requiring significant communication capabilities. The pervasive networking infrastructure necessary to fully leverage the potential of storage increases the attack surface for cyberthreats, and the unique characteristics of battery systems pose challenges for cyberphysical security. This paper discusses a number of such threats, their associated attack vectors, detection methods, protective measures, research gaps in the literature and future research trends.

More Details

Advances in Alkaline Conversion Batteries for Grid Storage Applications

Lambert, Timothy N.; Schorr, Noah B.; Arnot, David J.; Lim, Matthew B.; Bell, Nelson S.; Bruck, Andrea M.; Duay, Jonathon W.; Kelly, Maria.K.; Habing, Rachel L.; Ricketts, Logan S.; Vigil, Julian A.; Gallaway, Joshua W.; Kolesnichenko, Igor K.; Budy, Stephen M.; Ruiz, Elijah I.; Yadav, Gautam G.; Weiner, Meir W.; Upreti, Aditya U.; Huang, Jinchao H.; Nyce, Michael N.; Turney, Damon T.; Banerjee, Sanjoy B.; Magar, Birendra A.; Paudel, Nirajan P.; Vasiliev, Igor V.; Spoerke, Erik D.; Chalamala, Babu C.

Abstract not provided.

Data-Driven Incident Detection in Power Distribution Systems

IEEE Power and Energy Society General Meeting

Aguiar, Nayara; Gupta, Vijay; Trevizan, Rodrigo D.; Chalamala, Babu C.; Byrne, Raymond H.

In a power distribution network with energy storage systems (ESS) and advanced controls, traditional monitoring and protection schemes are not well suited for detecting anomalies such as malfunction of controllable devices. In this work, we propose a data-driven technique for the detection of incidents relevant to the operation of ESS in distribution grids. This approach leverages the causal relationship observed among sensor data streams, and does not require prior knowledge of the system model or parameters. Our methodology includes a data augmentation step which allows for the detection of incidents even when sensing is scarce. The effectiveness of our technique is illustrated through case studies which consider active power dispatch and reactive power control of ESS.

More Details

Rechargeable alkaline zinc–manganese oxide batteries for grid storage: Mechanisms, challenges and developments

Materials Science and Engineering R: Reports

Lim, Matthew B.; Lambert, Timothy N.; Chalamala, Babu C.

Rechargeable alkaline Zn–MnO2 (RAM) batteries are a promising candidate for grid-scale energy storage owing to their high theoretical energy density rivaling lithium-ion systems (∼400 Wh/L), relatively safe aqueous electrolyte, established supply chain, and projected costs below $100/kWh at scale. In practice, however, many fundamental chemical and physical processes at both electrodes make it difficult to achieve commercially competitive energy density and cycle life. This review presents a detailed and timely analysis of the constituent materials, current commercial status, electrode processes, and performance-limiting factors of RAM batteries. We also examine recently reported strategies in RAM and related systems to address these issues through additives and modifications to the electrode materials and electrolyte, special ion-selective separators and/or coatings, and unconventional cycling protocols. We conclude with a critical summary of these developments and discussion of how future studies should be focused toward the goal of energy-dense, scalable, and cost-effective RAM systems.

More Details

Maximising the investment returns of a gridconnected battery considering degradation cost

IET Generation, Transmission and Distribution

Bera, Atri; Almasabi, Saleh; Tian, Yuting; Byrne, Raymond H.; Chalamala, Babu C.; Nguyen, Tu A.; Mitra, Joydeep

Energy storage systems (ESSs) are being deployed widely due to numerous benefits including operational flexibility, high ramping capability, and decreasing costs. This study investigates the economic benefits provided by battery ESSs when they are deployed for market-related applications, considering the battery degradation cost. A comprehensive investment planning framework is presented, which estimates the maximum revenue that the ESS can generate over its lifetime and provides the necessary tools to investors for aiding the decision making process regarding an ESS project. The applications chosen for this study are energy arbitrage and frequency regulation. Lithium-ion batteries are considered due to their wide popularity arising from high efficiency, high energy density, and declining costs. A new degradation cost model based on energy throughput and cycle count is developed for Lithium-ion batteries participating in electricity markets. The lifetime revenue of ESS is calculated considering battery degradation and a cost-benefit analysis is performed to provide investors with an estimate of the net present value, return on investment and payback period. The effect of considering the degradation cost on the estimated revenue is also studied. The proposed approach is demonstrated on the IEEE Reliability Test System and historical data from PJM Interconnection.

More Details

Predictive-Maintenance Practices: For Operational Safety of Battery Energy Storage Systems

IEEE Power & Energy Magazine

Fioravanti, Richard F.; Kumar, Kiran K.; Nakata, Shinobu N.; Chalamala, Babu C.; Preger, Yuliya P.

Changes in the Demand Profile and a growing role for renewable and distributed generation are leading to rapid evolution in the electric grid. These changes are beginning to considerably strain the transmission and distribution infrastructure. Utilities are increasingly recognizing that the integration of energy storage in the grid infrastructure will help manage intermittency and improve grid reliability. This recognition, coupled with the proliferation of state-level renewable portfolio standards and rapidly declining lithium-ion (Li-ion) battery costs, has led to a surge in the deployment of battery energy storage systems (BESSs). Additionally, although BESSs represented less than 1% of grid-scale energy storage in the United States in 2019, they are the preferred technology to meet growing demand because they are modular, scalable, and easy to deploy across diverse use cases and geographic locations.

More Details
Results 1–25 of 120
Results 1–25 of 120