Publications

Results 1–50 of 97
Skip to search filters

Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

Nature Communications

Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; Chen, S.N.; Buffechoux, S.; Kon, A.; Atherton, B.W.; Audebert, P.; Geissel, Matthias G.; Hurd, L.; Kimmel, Mark W.; Rambo, P.; Schollmeier, Marius; Schwarz, Jens S.; Starodubtsev, M.; Gremillet, L.; Kodama, R.; Fuchs, J.

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

More Details

Phase conjugation of high energy lasers

Valley, Michael T.; Atherton, B.W.

In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

More Details

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator

Physical Review Letters

McBride, Ryan D.; Peterson, Kyle J.; Sefkow, Adam B.; Nakhleh, Charles N.; Laspe, Amy R.; Lopez, Mike R.; Smith, Ian C.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Slutz, Stephen A.; Rogers, Thomas J.; Jennings, Christopher A.; Sinars, Daniel S.; Cuneo, M.E.; Herrmann, Mark H.; Lemke, Raymond W.; Martin, Matthew; Vesey, Roger A.

Abstract not provided.

Measurements of Magneto-Rayleigh-Taylor instability growth in initially solid liners on the Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Slutz, Stephen A.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Jennings, Christopher A.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Above-60-MeV proton acceleration with a 150 TW laser system

Schollmeier, Marius; Geissel, Matthias G.; Sefkow, Adam B.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

More Details

Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners

Physics of Plasmas

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Slutz, Stephen A.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; McBride, Ryan D.; Cuneo, M.E.; Jennings, Christopher A.; Peterson, Kyle J.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Laser damage by ns and sub-ps pulses on hafnia/silica anti-reflection coatings on fused silica double-sided polished using zirconia or ceria and washed with or without an alumina wash step

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John; Kletecka, Damon; Kimmel, Mark W.; Rambo, Patrick K.; Smith, Ian C.; Schwarz, Jens S.; Atherton, B.W.; Hobbs, Zachary; Smith, Douglas

Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm. © 2010 Copyright SPIE - The International Society for Optical Engineering.

More Details

Ultrafast 25 keV backlighting for experiments on Z

Geissel, Matthias G.; Schollmeier, Marius; Kimmel, Mark W.; Pitts, Todd A.; Rambo, Patrick K.; Schwarz, Jens S.; Sefkow, Adam B.; Atherton, B.W.

To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z / Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin Ka at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.

More Details

Achromatic circular polarization generation for ultra-intense lasers

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization. ©2010 Optical Society of America.

More Details

Ultrafast 25 keV backlighting for experiments on Z

Geissel, Matthias G.; Atherton, B.W.; Pitts, Todd A.; Schollmeier, Marius; Headley, Daniel I.; Kimmel, Mark W.; Rambo, Patrick K.; Robertson, Grafton K.; Sefkow, Adam B.; Schwarz, Jens S.; Speas, Christopher S.

To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z/Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin K{alpha} at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.

More Details

Proton acceleration experiments with Z-Petawatt

Schollmeier, Marius; Geissel, Matthias G.; Sefkow, Adam B.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

The outline of this presentation: (1) Proton acceleration with high-power lasers - Target Normal Sheath Acceleration concept; (2) Proton acceleration with mass-reduced targets - Breaking the 60 MeV threshold; (3) Proton beam divergence control - Novel focusing target geometry; and (4) New experimental capability development - Proton radiography on Z.

More Details

Measurements of Magneto-Rayleigh-Taylor instability growth in solid liners on the 20 MA Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Slutz, Stephen A.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Vesey, Roger A.; Nakhleh, Charles N.; Tomlinson, Kurt T.

The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 {micro}s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 {micro}m, dimensions similar to magnetically-driven ICF target designs [1]. In most tests the MRT instability was seeded with sinusoidal perturbations ({lambda} = 200, 400 {micro}m, peak-to-valley amplitudes of 10, 20 {micro}m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 {micro}m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads [1] match the features seen except at the smallest scales (<50 {micro}m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.

More Details

Dual wavelength laser damage testing for high energy lasers

Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

More Details

Achromatic circular polarization generation for ultra-intense lasers

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization.

More Details
Results 1–50 of 97
Results 1–50 of 97