Publications

Results 1–25 of 97
Skip to search filters

Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

Nature Communications

Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; Chen, S.N.; Buffechoux, S.; Kon, A.; Atherton, B.W.; Audebert, P.; Geissel, Matthias G.; Hurd, L.; Kimmel, Mark W.; Rambo, P.; Schollmeier, Marius; Schwarz, Jens S.; Starodubtsev, M.; Gremillet, L.; Kodama, R.; Fuchs, J.

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

More Details

Phase conjugation of high energy lasers

Valley, Michael T.; Atherton, B.W.

In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

More Details

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator

Physical Review Letters

McBride, Ryan D.; Peterson, Kyle J.; Sefkow, Adam B.; Nakhleh, Charles N.; Laspe, Amy R.; Lopez, Mike R.; Smith, Ian C.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Slutz, Stephen A.; Rogers, Thomas J.; Jennings, Christopher A.; Sinars, Daniel S.; Cuneo, M.E.; Herrmann, Mark H.; Lemke, Raymond W.; Martin, Matthew; Vesey, Roger A.

Abstract not provided.

Measurements of Magneto-Rayleigh-Taylor instability growth in initially solid liners on the Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Slutz, Stephen A.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Jennings, Christopher A.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Above-60-MeV proton acceleration with a 150 TW laser system

Schollmeier, Marius; Geissel, Matthias G.; Sefkow, Adam B.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

More Details
Results 1–25 of 97
Results 1–25 of 97