Publications

37 Results
Skip to search filters

Durability of Disposable N95 Mask Material When Exposed to Improvised Ozone Gas Disinfection

Journal of Science and Medicine

Dennis, Robert D.; Pourdeyhimi, Benham P.; Cashion, Avery T.; Emanuel, Steve E.; Hubbard, Devin H.

The principle finding of this report is that both commercial and a novel material used for N95 mask filters can endure many cycles of disinfection by ozone gas (20 ppm for 30 minutes) without detectable degradation or loss of filtration efficiency.  N95 masks and surgical masks (hereafter referred to as masks) typically use a filtration material fabricated from meltblown polypropylene.  To achieve maximum filtration efficiency while maintaining a reasonable pressure drop, these nonwoven fabrics are also electrostatically charged (corona discharge is the most common method used), to maximize attraction and capture of aerosols and solid particulates.  Under normal circumstances, the reuse of masks is generally discouraged, but in times of crisis has become a necessity, making disinfection after each use a necessity.  To be acceptable, any disinfection procedure must cause minimal degradation to the performance of the filter material.  Possible performance degradation mechanisms include mechanical damage, loss of electrostatic charge, or both.  One of the most practical and direct ways to measure combined mechanical and electrostatic integrity, and the subsequent ability to reuse mask filter material, is by the direct measurement of filtration efficiency. In this paper, we report that small numbers of disinfection cycles at reasonable virucidal doses of ozone do not significantly degrade the filtration efficiency of meltblown polypropylene filter material. By comparison, laundering quickly results in a significant loss of filtration efficiency and requires subsequent recharging to restore the electrostatic charge and filtration efficiency. A common assumption among biomedical scientists that ozone is far too destructive for this application.  However, these direct measurements show that mask materials, specifically the filtration material, can withstand dozens of ozone disinfection cycles without any measurable degradation of filtration efficiency, nor any visible discoloration or loss of fiber integrity.  The data are clear: when subjected to a virucidal dose of ozone for a much longer duration than is required for viral inactivation, there was no degradation of N95 filtration efficiency.  The specific dosages of ozone needed for ~99% viral inactivation are thought to be at least 10 ppm for up to 30 minutes based upon an extensive literature review, but to standardize our testing, we consider a dose of 20 ppm for 30 minutes to be a reasonable and conservatively high ozone disinfection cycle. Finally, the material tested in this study withstood dosages of up to 200 ppm for 90 minutes, or alternatively 20 ppm for up to 36 hours, without detectable degradation, and further testing suggests that up to 30 or more disinfection cycles (at 20 ppm for 30 minutes) would result in less than a 5% loss of filtration efficiency. This report does not address the effect of ozone cycling on other mask components, such as elastics.

More Details

Data Link Summary for Peer Review

Cashion, Avery T.; Cieslewski, Grzegorz C.

More Details

Chemical Tool Peer Review Summary

Cashion, Avery T.; Cieslewski, Grzegorz C.

Chemical tracers are commonly used to characterize fracture networks and to determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data, it does not provide information regarding the location of the fractures conducting the tracer between wellbores. The goal of this project is to develop chemical sensors and design a prototype tool to help understand the fracture properties of a geothermal reservoir by monitoring tracer concentrations along the depth of the well. The sensors will be able to detect certain species of the ionic tracers (mainly iodide) and pH in-situ during the tracer experiment. The proposed high-temperature (HT) tool will house the chemical sensors as well as a standard logging sensor package of pressure, temperature, and flow sensors in order to provide additional information on the state of the geothermal reservoir. The sensors and the tool will be able to survive extended deployments at temperatures up to 225 °C and high pressures to provide real-time temporal and spatial feedback of tracer concentration. Data collected from this tool will allow for the real-time identification of the fractures conducting chemical tracers between wellbores along with the pH of the reservoir fluid at various depths.

More Details

Laboratory gas migration experiments through intact and fractured rock

50th US Rock Mechanics / Geomechanics Symposium 2016

Broome, Scott T.; Feldman, Joshua D.; Cashion, Avery T.

Presented herein are laboratory gas migration experiments conducted on samples of tuff with varying lithologies mounted within a triaxial core holder. A pressurized gas mixture standard comprised of known concentrations of argon (Ar), xenon (Xe), nitrogen (N2) and sulfur hexafluoride (SF6used as a tracer) was used based on previous field gas migration studies. The gas mix is applied at known pressure to the upstream side of the samples to induce flow through the pore spaces and/or across fracture surfaces and the gases are detected in real-time on the downstream side using a quadrupole mass spectrometer (QMS). Downstream detection under vacuum is possible by precise metering of the gas mixture through a leak valve with active feedback control. Arrival times and time-variant concentrations of the applied gases downstream are collected for comparison between samples. We intend to determine transport properties of noble gases and SF6, and hypothesize that transport properties vary due to solubility and water content. The parameters derived from this work will provide valuable insight into the three-dimensional structure of damage zones, including fracture networks, the production of temporally variable signatures, and the methods to best detect underground nuclear explosion signatures.

More Details

Active Suppression of Drilling System Vibrations For Deep Drilling

Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen B.; Cashion, Avery T.; Mesh, Mikhail M.; Radigan, William T.; Su, Jiann-Cherng S.

The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

More Details

Sandia_HighTemperatureComponentEvaluation_2015

Cashion, Avery T.

The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

More Details
37 Results
37 Results