Publications

Results 1–50 of 126
Skip to search filters

III-nitride photonic crystal emitters by selective photoelectrochemical etching of heterogeneous quantum well structures

Optical Materials Express

Anderson, P D.; Fischer, Arthur J.; Koleske, Daniel D.; Gunning, Brendan P.; Subramania, Ganapathi S.

We demonstrate a top-down fabrication strategy for creating a III-nitride hole array photonic crystal (PhC) with embedded quantum wells (QWs). Our photoelectrochemical (PEC) etching technique is highly bandgap selective, permitting the removal of QWs with well-defined indium (In) concentration. Room-temperature micro-photoluminescence (μ-PL) measurements confirm the removal of one multiple quantum well (MQW) while preserving a QW of differing In concentration. Moreover, PhC cavity resonances, wholly unobservable before, are present following PEC etching. Our results indicate an interesting route for creating III-nitride membranes with tailorable emission wavelengths. Our top-down fabrication approach offers exciting opportunities for III-nitride based light emitters.

More Details

Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

ACS Photonics

Fischer, Arthur J.; Anderson, P.D.; Koleske, Daniel K.; Subramania, Ganapathi S.

We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-Temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individual QDs directly confirm nonclassical, antibunching behavior. Our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.

More Details

Visible Quantum Nanophotonics

Subramania, Ganapathi S.; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel K.; Coltrin, Michael E.; Agarwal, Sapan A.; Anderson, P.D.; Leung, Ben L.

The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

More Details

Imaging the impact of proton irradiation on edge terminations in vertical GaN PIN diodes

IEEE Electron Device Letters

Collins, K.C.; King, M.P.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, Robert K.; Aktas, O.; Kizilyalli, I.C.; Talin, A.A.; Léonard, F.

Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination tomitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN PIN diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.

More Details

Review - Ultra-wide-bandgap AlGaN power electronic devices

ECS Journal of Solid State Science and Technology

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Dickerson, Jeramy R.; Fischer, Arthur J.; Baca, A.G.; Douglas, Erica A.

"Ultra" wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG >3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludes with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.

More Details

Deterministically placed quantum dots for quantum nanophotonics

International Conference on Transparent Optical Networks

Subramania, Ganapathi S.; Fischer, Arthur J.; Anderson, P.D.; Koleske, Daniel K.

The ability to achieve deterministic placement of semiconductor quantum dots (QDs) opens up interesting possibilities for nanophotonic devices. By incorporating these QDs within microcavities, light-matter interaction can be tailored and enhanced, enabling phenomenon such as spontaneous emission enhancement, low threshold lasing, single photon emission and strong-coupling. The quality of these phenomena relies on the distribution of emission wavelengths of the emitter dipoles and the strength of their coupling to internal fields of the cavity. Therefore size-controlled fabrication of QDs and their deterministic placement become quite important. In this work we will describe a photoelectrochemical-based etching of III-nitride materials to achieve QDs with uniform emission wavelength. By patterning using electron beam lithography to create a nanopost structure in an epitaxially grown III-nitride based quantum well structure, we will show potential for deterministic placement. The photoluminescence response from the nanopost structure after photoelectrochemical etching reveals sharp lines indicative of quantum dot formation.

More Details

Al00.3Ga0.7N PN diode with breakdown voltage >1600 V

Electronics Letters

Allerman, A.A.; Armstrong, Andrew A.; Fischer, Arthur J.; Dickerson, Jeramy R.; Crawford, Mary H.; King, Michael P.; Moseley, Michael; Wierer, J.Jr.; Kaplar, Robert K.

Demonstration of Al00.3Ga0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm2 is limited by the lateral conductivity of the n-type contact layer required by the front-surface contact geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (Vbr2/Rspec,on) of 150 MW/cm2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.

More Details

III-nitride quantum dots for ultra-efficient solid-state lighting

Laser and Photonics Reviews

Wierer, Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. If constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solid-state lighting. (Figure presented.) .

More Details

High voltage and high current density vertical GaN power diodes

Electronics Letters

Armstrong, Andrew A.; Allerman, A.A.; Fischer, Arthur J.; King, M.P.; Van Heukelom, Michael V.; Moseley, M.W.; Kaplar, Robert K.; Wierer, J.J.; Crawford, Mary H.; Dickerson, Jeramy R.

The realisation of a GaN high voltage vertical p-n diode operating at >3.9 kV breakdown with a specific on-resistance <0.9 mΩ cm2 is reported. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density >1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. This suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

More Details

In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

IEEE Electron Device Letters

Leonard, Francois L.; Dickerson, Jeramy R.; King, M.P.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, R.J.; Talin, A.A.

Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. While a variety of edge termination designs have been proposed, the optimization of such designs is challenging due to many parameters that impact their effectiveness. While modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.

More Details

Ultra-Wide-Bandgap Semiconductors for Generation-After-Next Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Fischer, Arthur J.; Dickerson, Jeramy R.; King, Michael P.; Baca, A.G.; Douglas, Erica A.; Sanchez, Carlos A.; Neely, Jason C.; Flicker, Jack D.; Zutavern, Fred J.; Mauch, Daniel L.; Brocato, Robert W.; Rashkin, Lee; Delhotal, Jarod J.; Fang, Lu F.; Kizilyalli, Isik C.; Aktas, Ozgur A.

Abstract not provided.

Vertical GaN power diodes with a bilayer edge termination

IEEE Transactions on Electron Devices

Dickerson, Jeramy R.; Allerman, A.A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael; Armstrong, Andrew A.; Kaplar, Robert K.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jonathan J.

Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. Simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

More Details

Influence of pH on the Quantum-Size-Controlled Photoelectrochemical Etching of Epitaxial InGaN Quantum Dots

Journal of Physical Chemistry C

Xiao, Xiaoyin; Lu, Ping L.; Fischer, Arthur J.; Coltrin, Michael E.; Wang, George T.; Koleske, Daniel K.; Tsao, Jeffrey Y.

Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.

More Details

Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

Electrochimica Acta

Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping L.; Koleske, Daniel K.; Wang, George T.; Polsky, Ronen P.; Tsao, Jeffrey Y.

We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using a narrowband laser with a linewidth less than ∼1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately the self-limiting etch kinetics lead to an ensemble of nanoparticles. This change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.

More Details

On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

Journal of Crystal Growth

Koleske, Daniel K.; Fischer, Arthur J.; Bryant, B.N.; Kotula, Paul G.; Wierer, J.J.

InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

More Details

Quantum-size-controlled photoelectrochemical fabrication of epitaxial InGaN quantum dots

Nano Letters

Xiao, Xiaoyin; Fischer, Arthur J.; Wang, George T.; Lu, Ping L.; Koleske, Daniel K.; Coltrin, Michael E.; Wright, Jeremy B.; Liu, Sheng; Brener, Igal; Subramania, Ganapathi S.; Tsao, Jeffrey Y.

We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm).

More Details
Results 1–50 of 126
Results 1–50 of 126