Publications

57 Results
Skip to search filters

A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling

Additive Manufacturing

Stender, Michael S.; Beghini, Lauren L.; Sugar, Joshua D.; Veilleux, Michael V.; Subia, Samuel R.; Smith, Thale R.; San Marchi, Christopher W.; Brown, Arthur B.; Dagel, Daryl D.

This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).

More Details

Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

Jamison, Ryan D.; Buchheit, Thomas E.; Emery, John M.; Romero, Vicente J.; Stavig, Mark E.; Newton, Clay S.; Brown, Arthur B.

Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

More Details

Experiments and Modeling to Characterize Microstructure and Hardness in 304L

Metallography, Microstructure, and Analysis

Deibler, Lisa A.; Brown, Arthur B.; Puskar, J.D.

Drawn 304L stainless steel tubing was subjected to 42 different annealing heat treatments with the goal of initializing a microstructural model to select a heat treatment to soften the tubing from a hardness of 305 Knoop to 225–275 Knoop. The amount of recrystallization and grain size caused by 18 heat treatments were analyzed via optical microscopy and image analysis, revealing the full range of recrystallization from 0 to 100%. The formation of carbides during the longer duration and higher-temperature heat treatments was monitored via transmission electron microscope evaluation. The experimental results informed a model which includes recovery, recrystallization, and grain growth to predict microstructure and hardness. After initialization of the model, it was able to predict hardness with a R2 value of 0.95 and recrystallization with an R2 value of 0.99. The model was then utilized in the design and testing of a heat treatment to soften the tubing.

More Details

Temperature-dependent small strain plasticity behavior of 304L stainless steel

Conference Proceedings of the Society for Experimental Mechanics Series

Antoun, Bonnie R.; Chambers, Robert S.; Emery, John M.; Brown, Arthur B.

Glass-to-metal seals are used extensively to protect and isolate electronic components. Small strains of just a few percent are typical in the metal during processing of seals, but generate substantial tensile stresses in the glass during the solidification portion of the process. These tensile stresses can lead to glass cracking either immediately or over time, which results in a loss of hermiticity of the seal. Measurement of the metal in the small strain region needs to be very accurate as small differences in the evolving state of the metal have significant influence on the stress state in the glass and glass-metal interfaces. Small strain tensile experiments were conducted over the temperatures range of 25-800 °C. Experiments were designed to quantify stress relaxation and reloading combined with mid-test thermal changes. The effect of strain rate was measured by directly varying the applied strain rate during initial loading and reloading and by monitoring the material response during stress relaxation experiments. Coupled thermal mechanical experiments were developed to capture key features of glass-to-metal seal processing details such as synchronized thermal and mechanical loading, thermal excursions at various strain levels, and thermal cycling during stress relaxation or creep loadings. Small changes in the processing cycle parameters were found to have non-insignificant effect on the metal behavior. The resulting data and findings will be presented.

More Details

Sandia fracture challenge 2: Sandia California’s modeling approach

International Journal of Fracture

Karlson, Kyle N.; Foulk, James W.; Brown, Arthur B.; Veilleux, Michael V.

The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Mesh-independent solutions of continuum damage models having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.

More Details

Process modeling and experiments for forging and welding

Conference Proceedings of the Society for Experimental Mechanics Series

Brown, Arthur B.; Deibler, Lisa A.; Beghini, Lauren L.; Kostka, Timothy D.; Antoun, Bonnie R.

We are developing the capability to track material changes through numerous possible steps of the manufacturing process, such as forging, machining, and welding. In this work, experimental and modeling results are presented for a multiple-step process in which an ingot of stainless steel 304L is forged at high temperature, then machined into a thin slice, and finally subjected to an autogenous GTA weld. The predictions of temperature, yield stress, and recrystallized volume fraction are compared to experimental results.

More Details

2nd Sandia Fracture Challenge Summit: Sandia California's Modeling Approach

Karlson, Kyle N.; Brown, Arthur B.; Foulk, James W.

Team Sandia California (Team H) used the Sandia code SIERRA Solid Mechanics: Implicit (SIERRA SM) to model the SFC2 challenge problem. SIERRA SM is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It contains a versatile library of continuum and structural elements, and an extensive library of material models. For all SFC2 related simulations, our team used Q1P0, 8 node hexahedral elements with element side lengths on the order 0.175 mm in failure regions. To model crack initiation and failure, element death removed elements from the simulation according to a continuum damage model. SIERRA SM’s implicit dynamics, implemented with an HHT time integration scheme for numerical damping [1], was used to model the unstable failure modes of the models. We chose SIERRA SM’s isotropic Elasto Viscoplastic material model for our simulations because it contains most of the physics required to accurately model the SFC2 challenge problem such as the flexibility to include temperature and rate dependence for a material.

More Details

Development of residual stress simulation and experimental measurement tools for stainless steel pressure vessels

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Reynolds, Thomas B.; Brown, Arthur B.; Beghini, Lauren L.; Kostka, Timothy D.; San Marchi, Christopher W.

In forged, welded, and machined components, residual stresses can form during the fabrication process. These residual stresses can significantly alter the fatigue and fracture properties compared to an equivalent component containing no residual stress. When performing lifetime assessment, the residual stress state must be incorporated into the analysis to most accurately reflect the initial condition of the component. The focus of this work is to present the computational and experimental tools that we are developing to predict and measure the residual stresses in stainless steel for use in pressure vessels. The contour method was used to measure the residual stress in stainless steel forgings. These results are compared to the residual stresses predicted using coupled thermo-mechanical simulations that track the evolution of microstructure, strength and residual stress during processing.

More Details

Verification and Validation of Carbon-Fiber Laminate Low Velocity Impact Simulations

English, Shawn A.; Nelson, Stacy M.; Briggs, Timothy B.; Brown, Arthur B.

Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

More Details

A micro to macro approach to polymer matrix composites damage modeling : final LDRD report

English, Shawn A.; Brown, Arthur B.; Briggs, Timothy B.

Capabilities are developed, verified and validated to generate constitutive responses using material and geometric measurements with representative volume elements (RVE). The geometrically accurate RVEs are used for determining elastic properties and damage initiation and propagation analysis. Finite element modeling of the meso-structure over the distribution of characterizing measurements is automated and various boundary conditions are applied. Plain and harness weave composites are investigated. Continuum yarn damage, softening behavior and an elastic-plastic matrix are combined with known materials and geometries in order to estimate the macroscopic response as characterized by a set of orthotropic material parameters. Damage mechanics and coupling effects are investigated and macroscopic material models are demonstrated and discussed. Prediction of the elastic, damage, and failure behavior of woven composites will aid in macroscopic constitutive characterization for modeling and optimizing advanced composite systems.

More Details

Modeling interfacial fracture in Sierra

Brown, Arthur B.; Ohashi, Yuki O.; Lu, Wei-Yang L.; Nelson, Stacy M.; Austin, Kevin N.; Margolis, Stephen B.

This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

More Details

A 3D Orthotropic Elastic Continuum Damage Material Model

English, Shawn A.; Brown, Arthur B.

A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

More Details

Ductile failure X-prize

Boyce, Brad B.; Foulk, James W.; Littlewood, David J.; Mota, Alejandro M.; Ostien, Jakob O.; Silling, Stewart A.; Spencer, Benjamin S.; Wellman, Gerald W.; Bishop, Joseph E.; Brown, Arthur B.; Córdova, Theresa E.; Cox, James C.; Crenshaw, Thomas B.; Dion, Kristin D.; Emery, John M.

Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

More Details

J-Integral modeling and validation for GTS reservoirs

Nibur, Kevin A.; Somerday, Brian P.; Brown, Arthur B.; Lindblad, Alex L.; Ohashi, Yuki O.; Antoun, Bonnie R.; Connelly, Kevin C.; Zimmerman, Jonathan A.; Margolis, Stephen B.

Non-destructive detection methods can reliably certify that gas transfer system (GTS) reservoirs do not have cracks larger than 5%-10% of the wall thickness. To determine the acceptability of a reservoir design, analysis must show that short cracks will not adversely affect the reservoir behavior. This is commonly done via calculation of the J-Integral, which represents the energetic driving force acting to propagate an existing crack in a continuous medium. J is then compared against a material's fracture toughness (J{sub c}) to determine whether crack propagation will occur. While the quantification of the J-Integral is well established for long cracks, its validity for short cracks is uncertain. This report presents the results from a Sandia National Laboratories project to evaluate a methodology for performing J-Integral evaluations in conjunction with its finite element analysis capabilities. Simulations were performed to verify the operation of a post-processing code (J3D) and to assess the accuracy of this code and our analysis tools against companion fracture experiments for 2- and 3-dimensional geometry specimens. Evaluation is done for specimens composed of 21-6-9 stainless steel, some of which were exposed to a hydrogen environment, for both long and short cracks.

More Details

Interface delamination fracture toughness experiments at various loading rates

Society for Experimental Mechanics - 11th International Congress and Exhibition on Experimental and Applied Mechanics 2008

Lu, Wei-Yang L.; Antoun, Bonnie R.; Brown, Arthur B.; Chen, Weinong; Song, Bo

Mode-I and Mode-ll fracture experiments of composites under high loading rates are presented. In the standard double cantilever beam (DCB) configuration, specimens are loaded with constant speed of 2.5 m/s (100 in/s) on a customized high-rate MTS system. Alternative high rate experiments are also performed on a modified split Hopkinson pressure bar (SHPB). One of the configurations for the characterization of dynamic Mode-I interfacial delamination is to place a wedge-loaded compact-tension (WLCT) specimen in the test section. Pulse-shaping techniques are employed to control the profiles of the loading pulses such that the crack tip is loaded at constant loading rates. Pulse shaping also avoids the excitation of resonance, thus avoiding inertia induced forces mixed with material strength in the data. To create Mode-ll fracture conditions, an (ENF) three-point bending specimen is employed in the gage section of the modified SHPB. © 2008 Society for Experimental Mechanics Inc.

More Details

Adhesive joint and composites modeling in SIERRA

Hammerand, Daniel C.; Chambers, Robert S.; Brown, Arthur B.; Foulk, James W.; Adolf, Douglas B.; Ohashi, Yuki O.

Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

More Details

Progress report for the ASCI AD resistance weld process modeling project AD2003-15

Winters, William S.; Brown, Arthur B.; Bammann, Douglas J.; Foulk, James W.; Ortega, Arthur R.

This report documents activities related to the ASCI AD Resistance Weld Process Modeling Project AD2003-15. Activities up to and including FY2004 are discussed. This was the third year for this multi year project, the objective of which is to position the SIERRA computational tools for the solution of resistance welding problems. The process of interest is a three-way coupled problem involving current flow, temperature buildup and large plastic deformation. The DSW application is the reclamation stem weld used in the manufacture of high pressure gas bottles. This is the first year the CALAGIO suite of codes (eCALORE, CALORE, and ADAGIO) was used to successfully solve a three-way coupled problem in SIERRA. This report discusses the application of CALAGIO to the tapered bar acceptance problem and a similar but independent tapered bar simulation of a companion C6 experiment. New additions to the EMMI constitutive model and issues related to CALAGIO performance are also discussed.

More Details
57 Results
57 Results