Publications

29 Results
Skip to search filters

Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions

Journal of the Electrochemical Society

Preger, Yuliya P.; Barkholtz, Heather M.; Fresquez, Armando J.; Campbell, Daniel L.; Juba, Benjamin W.; Kustas, Jessica K.; Ferreira, Summer R.; Chalamala, Babu C.

Energy storage systems with Li-ion batteries are increasingly deployed to maintain a robust and resilient grid and facilitate the integration of renewable energy resources. However, appropriate selection of cells for different applications is difficult due to limited public data comparing the most commonly used off-the-shelf Li-ion chemistries under the same operating conditions. This article details a multi-year cycling study of commercial LiFePO4 (LFP), LiNixCoyAl1-x-yO2 (NCA), and LiNixMnyCo1-x-yO2 (NMC) cells, varying the discharge rate, depth of discharge (DOD), and environment temperature. The capacity and discharge energy retention, as well as the round-trip efficiency, were compared. Even when operated within manufacturer specifications, the range of cycling conditions had a profound effect on cell degradation, with time to reach 80% capacity varying by thousands of hours and cycle counts among cells of each chemistry. The degradation of cells in this study was compared to that of similar cells in previous studies to identify universal trends and to provide a standard deviation for performance. All cycling files have been made publicly available at batteryarchive.org, a recently developed repository for visualization and comparison of battery data, to facilitate future experimental and modeling efforts.

More Details

A database for comparative electrochemical performance of commercial 18650-format lithium-ion cells

Journal of the Electrochemical Society

Barkholtz, Heather B.; Fresquez, Armando J.; Chalamala, Babu C.; Ferreira, Summer R.

Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO4 is temperature tolerant for discharge currents at or below 10 A whereas LiCoO2, LiNixCoyAl1-x-yO2, and LiNi0.80Mn0.15Co0.05O2 exhibited optimal electrochemical performance when the temperature is maintained at 15◦C. LiNixCoyAl1-x-yO2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.

More Details

Characterizing fire danger from low-power photovoltaic arc-faults

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Armijo, Kenneth M.; Johnson, Jay; Hibbs, Michael; Fresquez, Armando J.

While arc-faults are rare in photovoltaic installations, more than a dozen documented arc-faults have led to fires and resulted in significant damage to the PV system and surrounding structures. In the United States, National Electrical Code® (NEC) 690.11 requires a listed arc fault protection device on new PV systems. In order to list new arc-fault circuit interrupters (AFCIs), Underwriters Laboratories created the certification outline of investigation UL 1699B. The outline only requires AFCI devices to be tested at arc powers between 300-900 W; however, arcs of much less power are capable of creating fires in PV systems. In this work we investigate the characteristics of low power (100-300 W) arc-faults to determine the potential for fires, appropriate AFCI trip times, and the characteristics of the pyrolyzation process. This analysis was performed with experimental tests of arc-faults in close proximity to three polymer materials common in PV systems, e.g., polycarbonate, PET, and nylon 6,6. Two polymer geometries were tested to vary the presence of oxygen in the DC arc plasma. The samples were also exposed to arcs generated with different material geometries, arc power levels, and discharge times to identify ignition times. To better understand the burn characteristics of different polymers in PV systems, thermal decomposition of the sheath materials was performed using infrared spectra analysis. Overall a trip time of less than 2 seconds is recommended for the suppression of fire ignition during arc-fault events.

More Details
29 Results
29 Results