Publications

32 Results
Skip to search filters

Gaussian process regression constrained by boundary value problems

Computer Methods in Applied Mechanics and Engineering

Gulian, Mamikon G.; Frankel, Ari L.; Swiler, L.

We develop a framework for Gaussian processes regression constrained by boundary value problems. The framework may be applied to infer the solution of a well-posed boundary value problem with a known second-order differential operator and boundary conditions, but for which only scattered observations of the source term are available. Scattered observations of the solution may also be used in the regression. The framework combines co-kriging with the linear transformation of a Gaussian process together with the use of kernels given by spectral expansions in eigenfunctions of the boundary value problem. Thus, it benefits from a reduced-rank property of covariance matrices. We demonstrate that the resulting framework yields more accurate and stable solution inference as compared to physics-informed Gaussian process regression without boundary condition constraints.

More Details

Embedded-Error Bayesian Calibration of Thermal Decomposition of Organic Materials

Journal of Verification, Validation and Uncertainty Quantification

Frankel, Ari L.; Wagman, Ellen B.; Keedy, Ryan M.; Houchens, Brent C.; Scott, Sarah N.

Organic materials are an attractive choice for structural components due to their light weight and versatility. However, because they decompose at low temperatures relative to traditional materials, they pose a safety risk due to fire and loss of structural integrity. To quantify this risk, analysts use chemical kinetics models to describe the material pyrolysis and oxidation using thermogravimetric analysis (TGA). This process requires the calibration of many model parameters to closely match experimental data. Previous efforts in this field have largely been limited to finding a single best-fit set of parameters even though the experimental data may be very noisy. Furthermore, the chemical kinetics models are often simplified representations of the true decomposition process. The simplification induces model-form errors that the fitting process cannot capture. In this work, we propose a methodology for calibrating decomposition models to TGA data that accounts for uncertainty in the model-form and experimental data simultaneously. The methodology is applied to the decomposition of a carbon fiber epoxy composite with a three-stage reaction network and Arrhenius kinetics. The results show a good overlap between the model predictions and TGA data. Uncertainty bounds capture deviations of the model from the data. The calibrated parameter distributions are also presented. The distributions may be used in forward propagation of uncertainty in models that leverage this material.

More Details

Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model

Machine Learning: Science and Technology

Frankel, Ari L.; Tachida, Kousuke K.; Jones, Reese E.

Crystal plasticity theory is often employed to predict the mesoscopic states of polycrystalline metals, and is well-known to be costly to simulate. Using a neural network with convolutional layers encoding correlations in time and space, we were able to predict the evolution of the dominant component of the stress field given only the initial microstructure and external loading. In comparison to our recent work, we were able to predict not only the spatial average of the stress response but the evolution of the field itself. We show that the stress fields and their rates are in good agreement with the two dimensional crystal plasticity data and have no visible artifacts. Furthermore the distribution of stress throughout the elastic to fully plastic transition match the truth provided by held out crystal plasticity data. Lastly we demonstrate the efficacy of the trained model in material characterization and optimization tasks.

More Details

Multilevel uncertainty quantification of a wind turbine large eddy simulation model

Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018

Maniaci, David C.; Frankel, Ari L.; Geraci, Gianluca G.; Blaylock, Myra L.; Eldred, Michael S.

Wind energy is stochastic in nature; the prediction of aerodynamic quantities and loads relevant to wind energy applications involves modeling the interaction of a range of physics over many scales for many different cases. These predictions require a range of model fidelity, as predictive models that include the interaction of atmospheric and wind turbine wake physics can take weeks to solve on institutional high performance computing systems. In order to quantify the uncertainty in predictions of wind energy quantities with multiple models, researchers at Sandia National Laboratories have applied Multilevel-Multifidelity methods. A demonstration study was completed using simulations of a NREL 5MW rotor in an atmospheric boundary layer with wake interaction. The flow was simulated with two models of disparate fidelity; an actuator line wind plant large-eddy scale model, Nalu, using several mesh resolutions in combination with a lower fidelity model, OpenFAST. Uncertainties in the flow conditions and actuator forces were propagated through the model using Monte Carlo sampling to estimate the velocity defect in the wake and forces on the rotor. Coarse-mesh simulations were leveraged along with the lower-fidelity flow model to reduce the variance of the estimator, and the resulting Multilevel-Multifidelity strategy demonstrated a substantial improvement in estimator efficiency compared to the standard Monte Carlo method.

More Details

Uncertainty Quantification of Microstructural Material Variability Effects

Jones, Reese E.; Boyce, Brad B.; Frankel, Ari L.; Heckman, Nathan H.; Khalil, Mohammad K.; Ostien, Jakob O.; Rizzi, Francesco N.; Tachida, Kousuke K.; Teichert, Gregory H.; Templeton, Jeremy A.

This project has developed models of variability of performance to enable robust design and certification. Material variability originating from microstructure has significant effects on component behavior and creates uncertainty in material response. The outcomes of this project are uncertainty quantification (UQ) enabled analysis of material variability effects on performance and methods to evaluate the consequences of microstructural variability on material response in general. Material variability originating from heterogeneous microstructural features, such as grain and pore morphologies, has significant effects on component behavior and creates uncertainty around performance. Current engineering material models typically do not incorporate microstructural variability explicitly, rather functional forms are chosen based on intuition and parameters are selected to reflect mean behavior. Conversely, mesoscale models that capture the microstructural physics, and inherent variability, are impractical to utilize at the engineering scale. Therefore, current efforts ignore physical characteristics of systems that may be the predominant factors for quantifying system reliability. To address this gap we have developed explicit connections between models of microstructural variability and component/system performance. Our focus on variability of mechanical response due to grain and pore distributions enabled us to fully probe these influences on performance and develop a methodology to propagate input variability to output performance. This project is at the forefront of data-science and material modeling. We adapted and innovated from progressive techniques in machine learning and uncertainty quantification to develop a new, physically-based methodology to address the core issues of the Engineering Materials Reliability (EMR) research challenge in modeling constitutive response of materials with significant inherent variability and length-scales.

More Details

Solution of the non-classical linear Boltzmann equation for transport in multidimensional stochastic media

Journal of Quantitative Spectroscopy and Radiative Transfer

Frankel, Ari L.

The non-classical linear Boltzmann equation (NCLBE) is a recently developed framework based on non-classical transport theory for modeling the expected value of particle flux in an arbitrary stochastic medium. Provided with a non-classical cross-section for a given statistical description of a medium, any transport problem in that medium may be solved. Previous work has been limited in the types of material variability considered and has not explicitly introduced finite boundaries and sources. In this work the solution approach for the NCLBE in multidimensional media with finite boundaries is outlined. The discrete ordinates method with an implicit discretization of the pathlength variable is used to leverage sweeping methods for the transport operator. In addition, several convenient approximations for non-classical cross-sections are introduced based on existing theories of stochastic media. The solution approach is verified against random realizations of a Gaussian process medium in a square enclosure.

More Details

Solution of the non-classical linear Boltzmann equation for transport in multidimensional stochastic media

Journal of Quantitative Spectroscopy and Radiative Transfer

Frankel, Ari L.

The non-classical linear Boltzmann equation (NCLBE) is a recently developed framework based on non-classical transport theory for modeling the expected value of particle flux in an arbitrary stochastic medium. Provided with a non-classical cross-section for a given statistical description of a medium, any transport problem in that medium may be solved. Previous work has been limited in the types of material variability considered and has not explicitly introduced finite boundaries and sources. In this work the solution approach for the NCLBE in multidimensional media with finite boundaries is outlined. The discrete ordinates method with an implicit discretization of the pathlength variable is used to leverage sweeping methods for the transport operator. In addition, several convenient approximations for non-classical cross-sections are introduced based on existing theories of stochastic media. The solution approach is verified against random realizations of a Gaussian process medium in a square enclosure.

More Details

Solution of the Generalized Linear Boltzmann Equation for Multidimensional Stochastic Media

Frankel, Ari L.; Antolak, Arlyn J.

The generalized linear Boltzmann equation is a recently developed framework based on non-classical transport theory for modeling the expected value of particle flux in an arbitrary stochastic medium. Provided with a non-classical cross-section for a given statistical description of a medium, any transport problem in that medium may be solved. Previous work has only considered one-dimensional media without finite boundary conditions and discrete binary mixtures of materials. In this work the solution approach for the GLBE in multidimensional media with finite boundaries is outlined. The discrete ordinates method with an implicit discretization of the pathlength variable is used to leverage sweeping methods for the transport operator. In addition, several convenient approximations for non-classical cross-sections are introduced. The solution approach is verified against random realizations of a Gaussian process medium in a square enclosure.

More Details
32 Results
32 Results