Publications

Results 1–25 of 112
Skip to search filters

Critical steps in preventing future pandemics. Early lessons from the Covid-19 crisis for addressing natural and deliberate biological threats

Singh, Anup K.

This report summarizes a virtual workshop on early lessons from the COVID-19 pandemic as they pertain to proactively addressing future biological threats. Co-hosted by Sandia National Laboratory (Sandia) and the Council on Strategic Risks (CSR) in August 2020, the discussion involved experts who at that time were leading innovative efforts in various U.S. government agencies, industry, and academia sharing observations from their ongoing pandemic response efforts. Based on the input by these expert participants, it is clear that even though the pandemic response is ongoing, the following recommendations will be important to consider for more successfully addressing biological threats in the future: Continue building on the cross-sector collaboration and agility shown in the COVID-19 response; Expand capabilities for detecting biological threats early; Prioritize ways to create and disseminate medical countermeasures even faster; Create the U.S. bio industrial base needed for rapid response to biological threats, and keep it healthy; and, Major government reorganization may not be needed if there is effective work to form coalitions, improve coordination, and expand steady-state and surge capacities.

More Details

A versatile and robust droplet-based microfluidic automation system for high-throughput optimization of biosynthetic pathways

23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019

Iwai, Kosuke; Wehrs, Maren; Kim, Peter W.; Sustarich, Jess; Northen, Trent R.; Martin, Hector G.; Adams, Paul D.; Singh, Anup K.

We present a novel fully-automated droplet-based microfluidic system to enable programmable combinatorial mixing, electroporation for CRISPR-based gene editing, and high-throughput screening on chip. It is highly robust and compatible with conventional liquid handler systems to interface, enabling 100 different reactions at a time with dramatically lower reagents consumption. Utilizing proposed system, we perform accelerated optimization of biosynthetic pathway of indigoidine in Escherichia coli (E. coli).

More Details

Integrated LAMP and immunoassay platform for diarrheal disease detection

Biosensors and Bioelectronics

Phaneuf, Christopher P.; Mangadu, Betty; Tran, Huu T.; Light, Yooli K.; Sinha, Anchal; Charbonier, Frank W.; Eckles, Tyler P.; Singh, Anup K.; Koh, Chung-Yan K.

The challenges of diagnosing infectious disease, especially in the developing world, and the shortcomings of available instrumentation have exposed the need for portable, easy-to-use diagnostic tools capable of detecting the wide range of causative microbes while operating in low resource settings. We present a centrifugal microfluidic platform that combines ultrasensitive immunoassay and isothermal amplification-based screening for the orthogonal detection of both protein and nucleic acid targets at the point-of-care. A disposable disc with automatic aliquoting inlets is paired with a non-contact heating system and precise rotary control system to yield an easy-to-use, field-deployable platform with versatile screening capabilities. The detection of three enterotoxins (cholera toxin, Staphylococcal enterotoxin B, and Shiga-like toxin 1) and three enteric bacteria (C. jejuni, E. coli, and S. typhimurium) were performed independently and shown to be highly sensitive (limit of detection = 1.35–5.50 ng/mL for immunoassays and 1–30 cells for isothermal amplification), highly exclusive in the presence of non-specific targets, and capable of handling a complex sample matrix like stool. The full panel of toxins and bacteria were reliably detected simultaneously on a single disc at clinically relevant sample concentrations in less than an hour. The ability of our technology to detect multiple analyte types in parallel at the point-of-care can serve a variety of needs, from routine patient care to outbreak triage, in a variety of settings to reduce disease impact and expedite effective treatment.

More Details

Droplet microfluidics for synthetic biology

Lab on a Chip

Gach, Philip C.; Iwai, Kosuke; Kim, Peter W.; Hillson, Nathan J.; Singh, Anup K.

Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.

More Details

Centrifugal Microfluidic Platform for Rapid, Multiplexed Detection of TB and HIV Biomarkers in Whole Blood Samples

Journal of Bioengineering & Biomedical Science

Litvinov, Julia L.; Moen, Scott T.; Koh, Chung-Yan K.; Singh, Anup K.

Infection with Mycobacterium Tuberculosis represents a significant threat to people with immune disorders, such as HIV-positive individuals, and can result in significant health complications or death if not diagnosed and treated early. We present a centrifugal microfluidic platform for multiplexed detection of tuberculosis and HIV biomarkers in human whole blood with minimal sample preparation and a sample-to-answer time of 30 minutes. This multiplexed assay was developed for the detection of two M.tuberculosis secreted proteins, whose secretion represents an active and ongoing infection, as well as detection of HIV p24 protein and human anti-p24 antibodies. The limit of detection for this multiplex assay is in the pg/mL range for both HIV and M.tuberculosis proteins, making this assay potentially useful in the clinical diagnosis of both HIV and Tuberculosis proteins indicative of active infection. Antigen detection for the HIV assay sensitivity was 89%, the specificity 85%. Serological detection had 100% sensitivity and specificity for the limited sample pool. The centrifugal microfluidic platform presented here offers the potential for a portable, fast and inexpensive multiplexed diagnostic device that can be used in resource-limited settings for diagnosis of TB and HIV.

More Details

Digital droplet multiple displacement amplification (DDMDA) for whole genome sequencing of limited DNA samples

PLoS ONE

Rhee, Minsoung R.; Light, Yooli K.; Meagher, Robert M.; Singh, Anup K.

Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

More Details

Centrifugal microfluidic platform for integrated analysis of proteins and nucleic acids from clinical and environmental samples

20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016

Koh, Chung-Yan K.; Phaneuf, C.R.; Light, Yooli K.; Mangadu, B.; Tran, Huu T.; Helm, J.I.; Throckmorton, Daniel J.; Singh, Anup K.

Portable, sensitive, easy-to-use diagnostics are urgently needed to meet the growing need for advanced healthcare in the developing world. As the recent outbreaks of infectious diseases have demonstrated, early detection and treatment are vital tools to containing outbreaks and minimizing loss of life. Toward addressing these concerns, we have developed a centrifugal microfluidic platform capable of detecting both proteins and nucleic acids signatures from biological threats. This platform utilizes a novel sedimentation assay format to integrate sample preparation into a single step. Platform performance is competitive with traditional benchtop techniques.

More Details

Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

Biosensors

Phaneuf, Christopher P.; Mangadu, Betty; Piccini, Matthew E.; Singh, Anup K.; Koh, Chung-Yan K.

Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. This platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 μL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated in diarrheal and enteric diseases in less than 20 min.

More Details

Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

Biomicrofluidics

Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan K.; Singh, Anup K.

Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ~10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples.

More Details

Portable centrifugal microfluidic platform for nucleic acid detection

20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016

Phaneuf, C.R.; Light, Yooli K.; Tran, Huu T.; Singh, Anup K.; Koh, Chung-Yan K.

The threats of disease outbreaks and bioterrorism demand field-deployable technology capable of rapid, sensitive, and accurate diagnosis. In order to address such public health concerns, we present a portable centrifugal microfluidic platform and demonstrate sensitive detection of E. coli down to single digit starting copies using isothermal amplification via loop-mediated isothermal amplification (LAMP). The platform, which is composed of a compact optical system for laser induced fluorescence (LIF) detection, a quiet brushless motor, and an efficient non-contact heater, offers an easy-to-use system capable of performing sensitive pathogen screening in a lab-free environment.

More Details

Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

Analytical Chemistry

Koh, Chung-Yan K.; Schaff, Ulrich Y.; Piccini, Matthew E.; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran; Singh, Bal R.; Sommer, Greg J.; Singh, Anup K.

We present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-∼L required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.

More Details

A Portable Immunoassay Platform for Multiplexed Detection of Biotoxins in Clinical and Environmental Samples

Sandia journal manuscript; Not yet accepted for publication

Koh, Chung-Yan K.; Piccini, Matthew E.; Schaff, Ulrich, Y.; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran R.; Singh, Bal-Ram S.; Sommer, Greg J.; Singh, Anup K.

Multiple cases of attempted bioterrorism events using biotoxins have highlighted the urgent need for tools capable of rapid screening of suspect samples in the field (e.g., mailroom and public events). We present a portable microfluidic device capable of analyzing environmental (e.g., white powder), food (e.g., milk) and clinical (e.g., blood) samples for multiplexed detection of biotoxins. The device is rapid (<15-30 min sample-to-answer), sensitive (< 0.08 pg/mL detection limit for botulinum toxin), multiplexed (up to 64 parallel assays) and capable of analyzing small volume samples (< 20 μL total sample input). The immunoassay approach (SpinDx) is based on binding of toxins in a sample to antibody-laden capture particles followed by sedimentation of particles through a density-media in a microfluidic disk and quantification using a laser-induced fluorescence detector. A direct, blinded comparison with a gold standard ELISA revealed a 5-fold more sensitive detection limit for botulinum toxin while requiring 250-fold less sample volume and a 30 minute assay time with a near unity correlation. A key advantage of the technique is its compatibility with a variety of sample matrices with no additional sample preparation required. Ultrasensitive quantification has been demonstrated from direct analysis of multiple clinical, environmental and food samples, including white powder, whole blood, saliva, salad dressing, whole milk, peanut butter, half and half, honey, and canned meat. We believe that this device can met an urgent need in screening both potentially exposed people as well as suspicious samples in mail-rooms, airports, public sporting venues and emergency rooms. The general-purpose immunodiagnostics device can also find applications in screening of infectious and systemic diseases or serve as a lab device for conducting rapid immunoassays.

More Details

Microfluidic Molecular Assay Platform for the Detection of miRNAs, mRNAs, Proteins, and Posttranslational Modifications at Single-Cell Resolution

Journal of Laboratory Automation

Wu, Meiye; Singh, Anup K.

Cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation of a kinase cascade that culminates in induction of messenger RNA (mRNA) and noncoding microRNA (miRNA) production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient posttranslational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for posttranslational modifications. Since we know that cells in populations behave heterogeneously,1 especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this Technology Brief, we describe our automated microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and posttranslational modifications in single intact cells with >95% reduction in reagent requirement in under 8 h.

More Details

miRNA detection at single-cell resolution using microfluidic LNA flow-FISH

Methods in Molecular Biology

Wu, Meiye W.; Singh, Anup K.

Flow cytometry in combination with fluorescent in situ hybridization (flow-FISH) is a powerful technique that can be utilized to rapidly detect nucleic acids at single-cell resolution without the need for homogenization or nucleic acid extraction. Here, we describe a microfluidic-based method which enables the detection of microRNAs or miRNAs in single intact cells by flow-FISH using locked nucleic acid (LNA)-containing probes. Our method can be applied to all RNA species including mRNA and small noncoding RNA and is suitable for multiplexing with protein immunostaining in the same cell. For demonstration of our method, this chapter details the detection of miR155 and CD69 protein in PMA and ionomycin-stimulated Jurkat cells. Here, we also include instructions on how to set up a microfluidic chip sample preparation station to prepare cells for imaging and analysis on a commercial flow cytometer or a custom-built micro-flow cytometer.

More Details
Results 1–25 of 112
Results 1–25 of 112