Publications

4 Results
Skip to search filters

Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

Renewable Energy

Boubault, Antoine; Ho, Clifford K.; Hall, Aaron C.; Lambert, Timothy N.; Ambrosini, Andrea A.

The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE-up to 12% of the value obtained for an uncoated receiver. The absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

More Details

Thermal stability of oxide-based solar selective coatings for CSP central receivers

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Ambrosini, Andrea A.; Lambert, Timothy N.; Boubault, Antoine; Hunt, Andrew; Davis, Danae J.; Adams, David P.; Hall, Aaron C.

Efforts at Sandia National Laboratories are addressing more efficient solar selective coatings for tower applications, based on oxide materials deposited by a variety of methods. Over the course of this investigation, several compositions with optical properties competitive to Pyromark have been identified. These promising coatings were deposited on Inconel 625 and Haynes 230 Ni alloys and isothermally aged in air at temperatures between 600-800 °C for up to 480 hours, concurrently with Pyromark®, which was used as a reference standard. At various heating times, the samples were removed from the furnace and their optical properties (solar-weighted absorptance and emittance) were measured. In addition, x-ray diffraction and scanning electron microscopy were utilized to investigate any structural or morphological changes that occurred over time with heating, in an attempt to correlate with changes in optical properties. At 600 and 700 °C, several of the coatings maintained an absorptivity > 90%. While the chemical makeup of the coating material greatly influences its optical properties, the morphology of the surface also plays in important part. A thermal sprayed coating modified using a novel laser treatment showed improved properties versus the untreated coating, on par with Pyromark™ at 600 °C, with little degradation after 480 hours. The results of aging on the optical, structural, and morphological properties of these novel coatings will be discussed.

More Details

Design and characterization of a 7.2 kW solar simulator

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Boubault, Antoine; Yellowhair, Julius; Ho, Clifford K.

A 7.2 kW radiative solar simulator was designed in order to perform accelerated testing on absorber materials for concentrating solar power (CSP) technologies. Computer-aided design (CAD) software integrating a ray-tracing tool was used to select appropriate components and optimize their positioning in order to achieve the desired concentration. The simulator comprises four identical units, each made out of an ellipsoidal reflector, a metal halide lamp and an adjustable holding system. A single unit was characterized and shows an experimental average irradiance of 257 kW m-2 on a 25.4 mm (1 inch) diameter spot. Shape, spot size and average irradiance are in good agreement with the model predictions. The innovative four-lamp solar simulator potentially demonstrates peak irradiance of 1140 kW m-2 and average irradiance of 878 kW m-2 over a 25.4 mm diameter spot. The costs per radiative and electric watt are calculated at $2.31 W?1 and $1.99 W?1, respectively.

More Details
4 Results
4 Results