Publications

14 Results
Skip to search filters

Optical Imaging on Z LDRD: Design and Development of Self-Emission and Debris Imagers

Yager-Elorriaga, David A.; Montoya, Michael M.; Bliss, David E.; Ball, Christopher R.; Atencio, Phillip M.; Carpenter, Brian C.; Fuerschbach, Kyle H.; Fulford, Karin W.; Lamppa, Derek C.; Lowinske, Michael C.; Lucero, Larry M.; Patel, Sonal P.; Romero, Anthony R.; Tanbakuchi, Anthony; Breznik-Young, Bonnie B.

We present an overview of the design and development of optical self-emission and debris imaging diagnostics for the Z Machine at Sandia National Laboratories. These diagnostics were designed and implemented to address several gaps in our understanding of visibly emitting phenomenon on Z and the post-shot debris environment. Optical emission arises from plasmas that form on the transmission line that delivers energy to Z loads and on the Z targets themselves; however, the dynamics of these plasmas are difficult to assess without imaging data. Addressing this, we developed a new optical imager called SEGOI (Self-Emission Gated Optical Imager) that leverages the eight gated optical imagers and two streak cameras of the Z Line VISAR system. SEGOI is a low cost, side-on imager with a 1 cm field of view and 30-50 µm spatial resolution, sensitive to green light (540-600 nm). This report outlines the design considerations and development of this diagnostic and presents an overview of the first diagnostic data acquired from four experimental campaigns. SEGOI was fielded on power flow experiments to image plasmas forming on and between transmission lines, on an inertial confinement fusion experiment called the Dynamic Screw Pinch to image low density plasmas forming on return current posts, on an experiment designed to measure the magneto Rayleigh-Taylor instability to image the instability bubble trajectory and self-emission structures, and finally on a Magnetized Liner Inertial Fusion (MagLIF) experiment to image the emission from the target. The second diagnostic developed, called DINGOZ (Debris ImagiNG on Z), was designed to improve our understanding of the post-shot debris environment. DINGOZ is an airtight enclosure that houses electronics and batteries to operate a high-speed (10-400 kfps) camera in the Z Machine center section. We report on the design considerations of this new diagnostic and present the first high-speed imaging data of the post-shot debris environment on Z.

More Details

Diagnostics and testing to assess the behavior of organic materials at high heat flux

Proceedings of the Thermal and Fluids Engineering Summer Conference

Brown, Alexander B.; Anderson, Ryan R.; Tanbakuchi, Anthony; Coombs, Deshawn

Pyrolysis of materials at high heat fluxes are less well-studied because the high heat flux regime is not as common to many practical fire applications. The fire behavior of organic materials in such an environment needs further characterization in order to construct models to predict the dynamics in this regime. The test regime is complicated because of the temperatures achieved and the speed at which materials decompose, due to the flux condition. A series of tests has been performed, which exposed a variety of materials to this environment. The resulting imagery from the tests provides some unique insights into the behavior of various materials at these conditions. Furthermore, experimental and processing techniques suggest analytical methods that can be employed to extract quantitative information from pyrolysis experiments.

More Details

NRC HEAF Tests: Imaging & Measurement Methodology Report

Tanbakuchi, Anthony

The 2018 NRC HEAF tests were conducted in Chalfont Pennsylvania at KEMA High Power Laboratory during the week of September 10th. These scoping tests were executed to determine the most effective measurement methodologies for future tests. The goal of Sandia’s Photometrics group was to provide high-speed quantitative and qualitative imaging of the arcing fault tests for the Nuclear Regulatory Commission. The measurement methods included visible high-speed imaging, high-speed high-dynamic range visible imaging, thermal imaging, and quantitative flow imaging. In addition, data fusion products were generated to visualize instrumentation data and imaging measurements. All imaging has been time synchronized to the start of the arcing event.

More Details

Spectral diffraction efficiency characterization of broadband diffractive optical elements

Cruz-Cabrera, A.A.; Tanbakuchi, Anthony; Choi, Junoh C.

Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the working bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.

More Details

Simulation and experimental characterization of the point spread function, pixel saturation, and blooming of a mercury cadmium telluride focal plane array

Applied Optics

Soehnel, Grant; Tanbakuchi, Anthony

A custom IR spot scanning experiment was constructed to project subpixel spots on a mercury cadmium telluride focal plane array (FPA). The hardware consists of an FPA in a liquid nitrogen cooled Dewar, high precision motorized stages, a custom aspheric lens, and a 1.55 and 3.39 laser source. By controlling the position and intensity of the spot, characterizations of cross talk, saturation, blooming, and (indirectly) the minority carrier lifetime were performed. In addition, a Monte–Carlo-based charge diffusion model was developed to validate experimental data and make predictions. Results show very good agreement between the model and experimental data. Parameters such as wavelength, reverse bias, and operating temperature were found to have little effect on pixel crosstalk in the absorber layer of the detector. Saturation characterizations show that these FPAs, which do not have antiblooming circuitry, exhibit an increase in cross talk due to blooming at ∼39% beyond the flux required for analog saturation. © 2012 Optical Society of America.

More Details
14 Results
14 Results