Publications

3 Results
Skip to search filters

A Theoretical Approach for Reliability Within Information Supply Chains with Cycles and Negations

IEEE Transactions on Reliability

Livesay, Michael L.; Pless, Daniel J.; Verzi, Stephen J.; Stamber, Kevin L.; Lilje, Anne

Complex networks of information processing systems, or information supply chains, present challenges for performance analysis. We establish a mathematical setting, in which a process within an information supply chain can be analyzed in terms of the functionality of the system's components. Principles of this methodology are rigorously defended and induce a model for determining the reliability for the various products in these networks. Our model does not limit us from having cycles in the network, as long as the cycles do not contain negation. It is shown that our approach to reliability resolves the nonuniqueness caused by cycles in a probabilistic Boolean network. An iterative algorithm is given to find the reliability values of the model, using a process that can be fully automated. This automated method of discerning reliability is beneficial for systems managers. As a systems manager considers systems modification, such as the replacement of owned and maintained hardware systems with cloud computing resources, the need for comparative analysis of system reliability is paramount. The model is extended to handle conditional knowledge about the network, allowing one to make predictions of weaknesses in the system. Finally, to illustrate the model's flexibility over different forms, it is demonstrated on a system of components and subcomponents.

More Details

Portal and repository for information on marine renewable energy primre

Proceedings of the Annual Offshore Technology Conference

Weers, Jon; Driscoll, Frederick; Copping, Andrea; Ruehl, Kelley M.; Lilje, Anne

The Marine Renewable Energy (MRE) industry is in the early stages of development corresponding to low technology readiness levels (TRLs) where the ability of the MRE community (developers, researchers, academics, stakeholders, investors, and regulators) to work together to share knowledge, experience, and lessons learned is critical to the advancement of the entire MRE industry. Through collaboration on solving common problems, the MRE community has the potential to reduce cost and accelerate technology development. Currently, the US Department of Energy (US DOE) Water Power Technologies Office (WPTO) is addressing the challenge of storing, curating, and accessing MRE information by sponsoring development of MRE databases and information portals such as Tethys (https://tethys.pnnl.gov), OpenEI (https://openei.org), the MHK Data Repository (MHKDR, https://mhkdr.openei.org/), and a searchable MRE code catalog and open source code repository (MHKiT, currently under development), to name a few. These sites host scientific papers, news articles, reports, databases, open source codes, and stakeholder engagement information, but they are only a step towards facilitating global discovery and use. In short, there is an abundance of information available online, however it is located on many disparate sites and repositories that make the discovery of those data and information difficult. A DOE national laboratory team from the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (Sandia) is addressing the issues of data discoverability, shared knowledge, and interconnection of existing MRE databases and information portals. To meet the needs of the MRE community, as identified through multiple community outreach and engagement events, and described in this paper, the multi-lab team has developed an implementation plan for PRIMRE, the Portal and Repository for Information on Marine Renewable Energy. PRIMRE will provide broad access to information on engineering and technologies, resource characterization, device performance, and environmental effects of MRE projects. PRIMRE will facilitate the commercial development of the MRE industry by increasing the accessibility and discoverability of this information, integrating the databases and information portals described in this paper, and developing standards and guidelines. Providing consistent, easy access to information can help reduce duplication of effort and enable the MRE community to learn from past failures and build upon the successes of others to innovate and advance the commercialization of MRE technologies.

More Details
3 Results
3 Results