Publications

7 Results
Skip to search filters

GDSA Framework Development and Process Model Integration FY2022

Mariner, Paul M.; Debusschere, Bert D.; Fukuyama, David E.; Harvey, Jacob H.; LaForce, Tara; Leone, Rosemary C.; Perry, Frank V.; Swiler, Laura P.; TACONI, ANNA M.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.

More Details

Response of a Pressurized Water Reactor Dashpot Region to Commercial Drying Cycles

Pulido, Ramon P.; TACONI, ANNA M.; Salazar, Alex S.; Fasano, Raymond E.; Williams, Ronald W.; Baigas, Beau T.; Durbin, S.G.

The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.

More Details

Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems

Andrews, Nathan A.; Higgins, Michael H.; TACONI, ANNA M.; Leute, Jennifer E.

Currently a set of 71 radionuclides are accounted for in off-site consequence analysis for LWRs. Radionuclides of dose consequence are expected to change for non-LWRs, with radionuclides of interest being type-specific. This document identifies an expanded set of radionuclides that may need to be accounted for in multiple non-LWR systems: high temperature gas reactors (HTGRs); fluoride-salt-cooled high-temperature reactors (FHRs); thermal-spectrum fluoride-based molten salt reactors (MSRs); fast-spectrum chloride-based MSRs; and, liquid metal fast reactors with metallic fuel (LMRs) Specific considerations are provided for each reactor type in Chapter 2 through Chapter 5, and a summary of all recommendations is provided in Chapter 6. All identified radionuclides are already incorporated within the MACCS software, yet the development of tritium-specific and carbon-specific chemistry models are recommended.

More Details

Fuel Fabrication and Single Stage Aqueous Process Modeling

Higgins, Michael H.; TACONI, ANNA M.; Honnold, Philip H.; Cipiti, Benjamin B.

The Material Protection, Accounting, and Control Technologies program utilizes modeling and simulation to assess Material Control and Accountability (MC&A) concerns for a variety of nuclear facilities. Single analyst tools allow for rapid design and evaluation of advanced approaches for new and existing nuclear facilities. A low enriched uranium (LEU) fuel conversion and fabrication facility simulator is developed to assist with MC&A for existing facilities. Measurements are added to the model (consistent with current best practices). Material balance calculations and statistical tests are also added to the model. In addition, scoping work is performed for developing a single stage aqueous reprocessing model. Preliminary results are presented and discussed, and next steps outlined.

More Details
7 Results
7 Results