Publications

51 Results
Skip to search filters

Bryan Mound Abandoned Cavern 3 Stability Analysis - 2021 Review

Lord, Anna S.; Moriarty, Dylan; Sobolik, Steven R.

The U.S. Strategic Petroleum Reserve is moving towards employing an expanded enhanced monitoring program. In doing so it has become apparent that there is a need for a better project wide understanding of the current state of Bryan Mound abandoned Cavern 3 stability. Cavern 3 has been inaccessible since 1988 when it was plugged and abandoned and thus this comprehensive report is structured by focusing on 1) a summarization of what can be discerned from historical records prior to 1988 and 2) a presentation and discussion of our current understanding of Cavern 3 based solely on surface monitoring and geomechanical analyses. Historical literature state the cavern was deemed unsuitable for oil storage, as it could not be definitively determined if fluid pressure could be maintained in the borehole. Current surface monitoring indicates the largest surface subsidence rates are occurring above Cavern 3. The subsidence rates are linear with no evidence of acceleration. Cavern collapse could occur if there is insufficient pressure holding up the roof. Next steps are to implement a microseismic system that will lend to a better understanding of cavern stability, as well as provide an improved early warning system for loss of integrity.

More Details

Bryan Mound InSAR Analysis U.S. Strategic petroleum Reserve

Lord, Anna S.

The U.S. Strategic Petroleum Reserve (SPR) is a stockpile of emergency crude oil to be tapped into if a disruption in the nation's oil supply occurs. The SPR is comprised of four salt dome sites. Subsidence surveys have been conducted either annually or biennially at all four sites over the life of the program. Monitoring of surface behavior is a first line defense to detecting possible subsurface cavern integrity issues. Over the life of the Bryan Mound site, subsidence rates over abandoned Cavern 3 have continuously been the highest at the site. In an effort to try and understand the subsurface dynamics, specifically over Bryan Mound Cavern 3, historic interferometric synthetic aperture radar (InSAR) data was acquired and processed by TRE Altamira. InSAR involves the processing of multiple satellite synthetic aperture radar scenes acquired across the same location of the Earth's surface at different times to map surface deformation. The analysis of the data has the ability to detect millimeters of motion spanning days, months, year and decades, across specific sites. The intent in regards to the Bryan Mound site was (1) to confirm the higher subsidence rates recorded over abandoned Cavern 3 indicated by land survey and (2) understand the regional surface behavior. This report describes the InSAR analysis results, how those results compare to the historical collection of land survey data, and what additional information the data has provided towards understanding the response recorded at the surface.

More Details

September 2016 Bayou Choctaw Subsidence Report

Moriarty, Dylan; Lord, Anna S.

Subsidence monitoring is a crucial component to understanding cavern integrity of salt storage caverns. This report looks at historical and current data at the Bayou Choctaw Strategic Petroleum Reserve Site. Data from the most recent land-based annual surveys, GPS, and tiltmeter indicate the subsidence rates across the site are approximately 0.0 ft./yr. Because of this, there is no evidence from the subsidence survey to suggest any of the DOE caverns have been structurally compromised.

More Details

November 2016 West Hackberry Subsidence Report

Moriarty, Dylan; Lord, Anna S.

Subsidence monitoring is a critical component to understanding the cavern integrity of salt storage caverns. This report looks at historical and recent data from two of the three West Hackberry dome cavern operators. DOE SPR and LA Storage are coordinating subsidence surveys to create a comprehensive understanding of ground movement above the dome. Data from annual level and rod surveys, GPS, and tiltmeter data show the sites are experiencing typical ground movement. The highest subsidence rate is seen in the middle of the DOE SPR site at just under one inch per year with less ground movement around the edge of the site. A GPS and tiltmeter instrument in the northeast areas of the DOE SPR site has not seen any trend change since the devices were installed in 2013. Comparison between recent ground movement data and historical trends suggest that there is no reason to believe that any DOE SPR or LA Storage caverns have been structurally compromised.

More Details

2015 Strategic Petroleum Reserve Bayou Choctaw Well Integrity Grading Report

Roberts, Barry L.; Lord, David L.; Lord, Anna S.; Bettin, Giorgia B.; Park, Byoung P.; Rudeen, D.K.R.; Eldredge, L.L.E.; Wynn, K.W.; Checkai, D.C.; Osborne, G.C.; Moore, D.M.

This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the Bayou Choctaw Strategic Petroleum Reserve site. The grading included consideration of all 15 wells at the Bayou Choctaw site, with each active well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill, Bryan Mound, and West Hackberry Strategic Petroleum Reserve Sites.

More Details

Sulphur Extraction at Bryan Mound

Kirby, Carolyn L.; Lord, Anna S.

The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

More Details

2014 Strategic Petroleum Reserve Bryan Mound Well Integrity Grading Report

Roberts, Barry L.; Lord, David L.; Lord, Anna S.; Bettin, Giorgia B.; Sobolik, Steven R.; Rudeen, David K.; Eldredge, Lisa L.; Wynn, Karen W.; Checkai, Dean C.; Osborne, Gerad O.; Moore, Darryl M.

This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the Bryan Mound Strategic Petroleum Reserve site. The grading included consideration of all 47 wells at the Bryan Mound site, with each well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill Strategic Petroleum Reserve Site.

More Details

2015 Strategic Petroleum Reserve West Hackberry Well Integrity Grading Report

Roberts, Barry L.; Lord, David L.; Lord, Anna S.; Bettin, Giorgia B.; Sobolik, Steven R.; Rudeen, David K.; Eldredge, Lisa L.; Wynn, Karen W.; Checkai, Dean C.; Osborne, Gerad O.; Moore, Darryl M.

This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the West Hackberry Strategic Petroleum Reserve site. The grading included consideration of all 31 wells at the West Hackberry site, with each well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill and Bryan Mound Strategic Petroleum Reserve Sites.

More Details

Operation, maintenance, and monitoring of large-diameter caverns in oil storage facilities in domal salt

Mechanical Behavior of Salt VIII - Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII

Sobolik, Steven R.; Lord, Anna S.

This paper presents a study of operational and abandoned large-diameter caverns and their long-term implications for oil storage facilities in domal salt. Two caverns at the U.S. Strategic Petroleum Reserves West Hackberry site, Caverns 6 and 9, present concerns due to their large diameters, unusual shapes and close proximity to each other. The Bryan Mound site has three caverns whose unusual shapes and dimensions have caused concerns about cavern collapse, sinkhole formation, and loss of accessibility to stored oil. This report presents a case study of how historical field data, computational geomechanical analyses, and the implementation of new instrumentation and historical data analyses may be used to develop site operation and monitoring plans for these caverns.

More Details

2013 strategic petroleum reserve big hill well integrity grading report

Lord, David L.; Roberts, Barry L.; Lord, Anna S.; Bettin, Giorgia B.; Sobolik, Steven R.; Park, Byoung P.

This report summarizes the work performed in developing a framework for the prioritization of cavern access wells for remediation and monitoring at the Big Hill Strategic Petroleum Reserve site. This framework was then applied to all 28 wells at the Big Hill site with each well receiving a grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading framework including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The framework was developed in a way as to be applicable to all four of the Strategic Petroleum Reserve sites.

More Details

U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012

Lord, David L.; Roberts, Barry L.; Lord, Anna S.; Sobolik, Steven R.; Park, Byoung P.

This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

More Details

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool

Lord, Anna S.; Kobos, Peter H.; Klise, Geoffrey T.; Borns, David J.

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

More Details

Granite disposal of U.S. high-level radioactive waste

Mariner, Paul M.; Lee, Joon L.; Hardin, Ernest H.; Hansen, Francis D.; Freeze, Geoffrey A.; Lord, Anna S.; Goldstein, Barry G.

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

More Details

A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis

Lord, Anna S.; Kobos, Peter H.; Borns, David J.

The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

More Details

Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen

Lord, Anna S.

In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

More Details

A Life Cycle Cost Analysis Framework for Geologic Storage of Hydrogen

Lord, Anna S.; Kobos, Peter H.; Borns, David J.

Large scale geostorage options for fuels including natural gas and petroleum offer substantial buffer capacity to meet or hedge against supply disruptions. This same notion may be applied to large scale hydrogen storage to meet industrial or transportation sector needs. This study develops an assessment tool to calculate the potential ‘gate-to-gate’ life cycle costs for large scale hydrogen geostorage options in salt caverns, and continues to develop modules for depleted oil/gas reservoirs and aquifers. The U.S. Department of Energy has an interest in these types of storage to assess the geological, geomechanical and economic viability for this type of hydrogen storage. Understanding, and looking to quantify, the value of large-scale storage in a larger hydrogen supply and demand infrastructure may prove extremely beneficial for larger infrastructure modeling efforts when looking to identify the most efficient means to fuel a hydrogen demand (e.g., industrial or transportation-centric demand). Drawing from the knowledge gained in the underground large scale storage options for natural gas and petroleum in the U.S., the potential to store relatively large volumes of CO2 in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Geologic technical assessment of the Stratton Ridge salt dome, Texas, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.

More Details

Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

More Details

Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

More Details
51 Results
51 Results