Synthetic Aperture Radar Cold Regions Hazard and Surveillance Monitoring
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Many types of dark regions occur naturally or artificially in Synthetic Aperture Radar (SAR) and Coherent Change Detection (CCD) products. Occluded regions in SAR imagery, known as shadows, are created when incident radar energy is obstructed by a target with height from illuminating resolution cells immediately behind the target in the ground plane. No return areas are also created from objects or terrain that produce little scattering in the direction of the receiver, such as still water or flat plates for monostatic systems. Depending on the size of the dark region, additive and multiplicative noise levels are commonly measured for SAR performance testing. However, techniques for radar performance testing of CCD using dark regions are not common in the literature. While dark regions in SAR imagery also produce dark regions in CCD products, additional dark regions in CCD may further arise from decorrelation of bright regions in SAR imagery due to clutter or terrain that has poor wide-sense stationarity (such as foliage in wind), man-made disturbances of the scene, or unintended artifacts introduced by the radar and image processing. By comparing dark regions in CCD imagery over multiple passes, one can identify unintended decorrelation introduced by poor radar performance rather than phenomenology. This paper addresses select dark region automated measurement techniques for the evaluation of radar performance during SAR and CCD field testing.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
A radome, or radar dome, protects a radar system from exposure to the elements. Unfortunately, radomes can affect the radiation pattern of the enclosed antenna. The co-design of a platform"™s radome and radar is ideal to mitigate any deleterious effects of the radome. However, maintaining structural integrity and other platform flight requirements, particularly when integrating a new radar onto an existing platform, often limits radome electrical design choices. Radars that rely heavily on phase measurements such as monopulse, interferometric, or coherent change detection (CCD) systems require particular attention be paid to components, such as the radome, that might introduce loss and phase variations as a function of the antenna scan angle. Material properties, radome wall construction, overall dimensions, and shape characteristics of a radome can impact insertion loss and phase delay, antenna beamwidth and sidelobe level, polarization, and ultimately the impulse response of the radar, among other things, over the desired radar operating parameters. The precision-guided munitions literature has analyzed radome effects on monopulse systems for well over half a century. However, to the best of our knowledge, radome-induced errors on CCD performance have not been described. The impact of radome material and wall construction, shape, dimensions, and antenna characteristics on CCD is examined herein for select radar and radome examples using electromagnetic simulations.
The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.
Median filtering reduces speckle in synthetic aperture radar (SAR) imagery while preserving edges, at the expense of coarsening the resolution, by replacing the center pixel of a sliding window by the median value. For shadow detection, this approach helps distinguish shadows from clutter more easily, while preserving shadow shape delineations. However, the nonlinear operation alters the shadow and clutter distributions and statistics, which must be taken into consideration when computing probability of detection and false alarm metrics. Depending on system parameters, median filtering can improve probability of detection and false alarm by orders of magnitude. Herein, we examine shadow probability of detection and false alarm in a homogeneous, ideal clutter background after median filter post-processing. Some comments on multi-look processing effects with and without median filtering are also made.
Proceedings of SPIE - The International Society for Optical Engineering
In recent years, a new class of Moving Target Indicator (MTI) radars has emerged, namely those whose mission included detecting moving people, or “dismounts.â€This new mode is frequently termed Dismount-MTI, or DMTI. Obviously, detecting people is a harder problem than detecting moving vehicles, necessitating different specifications for performance and hardware quality. Herein we discuss some performance requirements typical of successful DMTI radar modes and systems.. © 2014 SPIE.
Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Knowing the statistical characteristics of a target's radar cross-section (RCS) is crucial to the success of radar target detection algorithms. A wide range of applications currently exist for dismount (i.e. human body) detection and monitoring using ground-moving target indication (GMTI) radar systems. Dismounts are particularly challenging to detect. Their RCS is orders of magnitude lower than traditional GMTI targets, such as vehicles. Their velocity of about 0 to 1.5 m/s is also much slower than vehicular targets. Studies regarding the statistical nature of the RCS of dismounts focus primarily on simulations or very limited empirical data at specific frequencies. This paper seeks to enhance the existing body of work on dismount RCS statistics at Ku-band, which is currently lacking, and has become an important band for such remote sensing applications. We examine the RCS probability distributions of different sized humans in various stances, across aspect and elevation angle, for horizontal (HH) and vertical (VV) transmit/receive polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further fit Swerling target models to the RCS distributions and suggest appropriate detection thresholds for dismounts in this band. © 2010 SPIE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.