Publications

Results 1–25 of 30
Skip to search filters

Charon User Manual: v. 2.2 (revision1)

Musson, Lawrence M.; Hennigan, Gary L.; Gao, Xujiao G.; Humphreys, Richard H.; Negoita, Mihai N.; Huang, Andy H.

This manual gives usage information for the Charon semiconductor device simulator. Charon was developed to meet the modeling needs of Sandia National Laboratories and to improve on the capabilities of the commercial TCAD simulators; in particular, the additional capabilities are running very large simulations on parallel computers and modeling displacement damage and other radiation effects in significant detail. The parallel capabilities are based around the MPI interface which allows the code to be ported to a large number of parallel systems, including linux clusters and proprietary “big iron” systems found at the national laboratories and in large industrial settings.

More Details

Greedy fiedler spectral partitioning for data-driven discrete exterior calculus

CEUR Workshop Proceedings

Huang, Andy H.; Trask, Nathaniel A.; Brissette, Christopher; Hu, Xiaozhe

The data-driven discrete exterior calculus (DDEC) structure provides a novel machine learning architecture for discovering structure-preserving models which govern data, allowing for example machine learning of reduced order models for complex continuum scale physical systems. In this work, we present a Greedy Fiedler Spectral (GFS) partitioning method to obtain a chain complex structure to support DDEC models, incorporating synthetic data obtained from high-fidelity solutions to partial differential equations. We provide justification for the effectiveness of the resulting chain complex and demonstrate its DDEC model trained for Darcy flow on a heterogeneous domain.

More Details

Physics-informed graph neural network for circuit compact model development

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Huang, Andy H.; Trask, Nathaniel A.; Reza, Shahed R.

We present a Physics-Informed Graph Neural Network (pigNN) methodology for rapid and automated compact model development. It brings together the inherent strengths of data-driven machine learning, high-fidelity physics in TCAD simulations, and knowledge contained in existing compact models. In this work, we focus on developing a neural network (NN) based compact model for a non-ideal PN diode that represents one nonlinear edge in a pigNN graph. This model accurately captures the smooth transition between the exponential and quasi-linear response regions. By learning voltage dependent non-ideality factor using NN and employing an inverse response function in the NN loss function, the model also accurately captures the voltage dependent recombination effect. This NN compact model serves as basis model for a PN diode that can be a single device or represent an isolated diode in a complex device determined by topological data analysis (TDA) methods. The pigNN methodology is also applicable to derive reduced order models in other engineering areas.

More Details

An Approximate Direct Inverse as a Preconditioner for Ill-conditioned Problems

2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings

Lee, Chung H.; Lee, Jin F.; Langston, William L.; Zinser, Brian; Dang, Vinh Q.; Huang, Andy H.; Campione, Salvatore

This paper implemented an approximate direct inverse for the surface integral equation including multilevel fast-multipole method. We apply it as a preconditioner to two examples suffering convergence problem with an iterative solver.

More Details

Simulation and investigation of electrothermal effects in heterojunction bipolar transistors

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Hennigan, Gary L.; Musson, Lawrence M.; Huang, Andy H.; Negoita, Mihai N.

We present a comprehensive physics investigation of electrothermal effects in III-V heterojunction bipolar transistors (HBTs) via extensive Technology Computer Aided Design (TCAD) simulation and modeling. We show for the first time that the negative differential resistances of the common-emitter output responses in InGaP/GaAs HBTs are caused not only by the well-known carrier mobility reduction, but more importantly also by the increased base-To-emitter hole back injection, as the device temperature increases from self-heating. Both self-heating and impact ionization can cause fly-backs in the output responses under constant base-emitter voltages. We find that the fly-back behavior is due to competing processes of carrier recombination and self-heating or impact ionization induced carrier generation. These findings will allow us to understand and potentially improve the safe operating areas and circuit compact models of InGaP/GaAs HBTs.

More Details

Analytic band-to-trap tunneling model including band offset for heterojunction devices

Journal of Applied Physics

Gao, Xujiao G.; Kerr, Bert; Huang, Andy H.

We present an analytic band-to-trap tunneling model based on the open boundary scattering approach. The new model has three major advantages: (i) It includes not only the well-known electric field effect, but more importantly, the effect of heterojunction band offset. This feature allows us to simulate both electric field and band offset enhanced carrier recombination near a heterojunction in heterostructures. (ii) Its analytic form enables straightforward implementation into a parallel Technology Computer Aided Design device and circuit simulators. (iii) The developed method can be used for any potentials which can be approximated to a good degree such that the Schrödinger equation with open boundary conditions results in piecewise analytic wave functions. Simulation results of an InGaP/GaAs heterojunction bipolar transistor (HBT) reveal that the proposed model predicts significantly increased base currents, because the tunneling of holes in the base to traps in the emitter is greatly enhanced by the emitter-base band offset. This finding, which is not captured by existing band-to-trap tunneling models, is consistent with the experimental observation for an InGaP/GaAs HBT after neutron irradiation.

More Details
Results 1–25 of 30
Results 1–25 of 30