Publications

Results 1–25 of 34
Skip to search filters

Impact Response of Control Atmosphere Plasma Spray Deposited Materials

Branch, Brittany A.; McCoy, C.A.; Vackel, Andrew V.

Thermal spray processing of metals and respective blends is becoming increasingly attractive due to the unique properties such as increased yield strength, low ductility, and differences in tensile and compressive strengths that result from microstructural features due to the spray process compared to other additive manufacturing methods. Here we report the results of plate impact experiments applied to Controlled Atmosphere Plasma Spray deposits of tantalum (Ta), niobium (Nb), and a tantalum-niobium blend (TaNb). These methods allowed for definition of the Hugoniot for each material type and the assessment of the Hugoniot Elastic Limit (HEL). Spallation experiments were conducted, and soft recovery of each material type allowed for scanning electron microscopy to characterize the fracture mechanism during tensile loading.

More Details

Transmitted wave measurements in cold sprayed materials under dynamic compression

McCoy, C.A.; Branch, Brittany A.; Vackel, Andrew V.

Spray-formed materials have complex microstructures which pose challenges for microscale and mesoscale modeling. To constrain these models, experimental measurements of wave profiles when subjecting the material to dynamic compression are necessary. The use of a gas gun to launch a shock into a material is a traditional method to understand wave propagation and provide information of time-dependent stress variations due to complex microstructures. This data contains information on wave reverberations within a material and provides a boundary condition for simulation. Here we present measurements of the wavespeed and wave profile at the rear surface of tantalum, niobium, and a tantalum/niobium blend subjected to plate impact. Measurements of the Hugoniot elastic limit are compared to previous work and wavespeeds are compared to longitudinal sound velocity measurements to examine wave damping due to the porous microstructure.

More Details

Fast three-dimensional rules-based simulation of thermal-sprayed microstructures

Computational Materials Science

Rodgers, Theron R.; Mitchell, John A.; Olson, Aaron J.; Bolintineanu, Dan S.; Vackel, Andrew V.; Moore, Nathan W.

Thermal spray processes involve the repeated impact of millions of discrete particles, whose melting, deformation, and coating-formation dynamics occur at microsecond timescales. The accumulated coating that evolves over minutes is comprised of complex, multiphase microstructures, and the timescale difference between the individual particle solidification and the overall coating formation represents a significant challenge for analysts attempting to simulate microstructure evolution. In order to overcome the computational burden, researchers have created rule-based models (similar to cellular automata methods) that do not directly simulate the physics of the process. Instead, the simulation is governed by a set of predefined rules, which do not capture the fine-details of the evolution, but do provide a useful approximation for the simulation of coating microstructures. Here, we introduce a new rules-based process model for microstructure formation during thermal spray processes. The model is 3D, allows for an arbitrary number of material types, and includes multiple porosity-generation mechanisms. Example results of the model for tantalum coatings are presented along with sensitivity analyses of model parameters and validation against 3D experimental data. The model's computational efficiency allows for investigations into the stochastic variation of coating microstructures, in addition to the typical process-to-structure relationships.

More Details
Results 1–25 of 34
Results 1–25 of 34