Publications

90 Results
Skip to search filters

Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon

Nature Communications

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. However, it remains challenging to realize narrowband (∼MHz) filters needed for high-performance communications systems using integrated photonics. In this paper, we demonstrate all-silicon microwave-photonic notch filters with 50× higher spectral resolution than previously realized in silicon photonics. This enhanced performance is achieved by utilizing optomechanical interactions to access long-lived phonons, greatly extending available coherence times in silicon. We use a multi-port Brillouin-based optomechanical system to demonstrate ultra-narrowband (2.7 MHz) notch filters with high rejection (57 dB) and frequency tunability over a wide spectral band (6 GHz) within a microwave-photonic link. We accomplish this with an all-silicon waveguide system, using CMOS-compatible fabrication techniques.

More Details

Nonreciprocal Frequency Domain Beam Splitter

Physical Review Letters

Otterstrom, Nils T.; Gertler, Shai; Kittlaus, Eric A.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Rakich, Peter T.; Davids, Paul D.; Lentine, Anthony L.

The canonical beam splitter - a fundamental building block of quantum optical systems - is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10-4) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.

More Details

Characterization of suspended membrane waveguides towards a photonic atom trap integrated platform

Optics Express

Gehl, M.; Kindel, William K.; Karl, Nicholas J.; Orozco, Adrian S.; Musick, Katherine M.; Trotter, Douglas C.; Dallo, Christina M.; Starbuck, Andrew L.; Leenheer, Andrew J.; DeRose, Christopher T.; Biedermann, Grant; Jau, Yuan-Yu J.; Lee, Jongmin L.

We demonstrate an optical waveguide device, capable of supporting the high, invacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magnetooptical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading. We evaluate two novel designs that explore critical thermal management features that enable this large power handling. This work represents a significant step toward an integrated platform for coupling neutral atom quantum systems to photonic and electronic integrated circuits on silicon.

More Details

Narrowband microwave-photonic notch filtering using Brillouin interactions in silicon

Optics InfoBase Conference Papers

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

We present narrowband RF-photonic filters in an integrated silicon platform. Using Brillouin interactions, the filters yield narrowband (∼MHZ) filter bandwidths with high signal rejection, and demonstrate tunability over a wide (∼GHz) frequency range.

More Details

Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods

Optics Express

Boynton, Nicholas; Gehl, M.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Dodd, Paul E.; Swanson, Scot; Trotter, Douglas; DeRose, Christopher T.; Lentine, Anthony L.

Passive silicon photonic waveguides are exposed to gamma radiation to understand how the performance of silicon photonic integrated circuits is affected in harsh environments such as space or high energy physics experiments. The propagation loss and group index of the mode guided by these waveguides is characterized by implementing a phase sensitive swept-wavelength interferometric method. We find that the propagation loss associated with each waveguide geometry explored in this study slightly increases at absorbed doses of up to 100 krad (Si). The measured change in group index associated with the same waveguide geometries is negligibly changed after exposure. Additionally, we show that the post-exposure degradation of these waveguides can be improved through heat treatment.

More Details

Backscatter-Immune Injection-Locked Brillouin Laser in Silicon

Physical Review Applied

Otterstrom, Nils T.; Gertler, Shai; Zhou, Yishu; Kittlaus, Eric A.; Behunin, Ryan O.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

As self-sustained oscillators, lasers possess the unusual ability to spontaneously synchronize. These nonlinear dynamics are the basis for a simple yet powerful stabilization technique known as injection locking, in which a laser's frequency and phase can be controlled by an injected signal. Because of its inherent simplicity and favorable noise characteristics, injection locking has become a workhorse for coherent amplification and high-fidelity signal synthesis in applications ranging from precision atomic spectroscopy to distributed sensing. Within integrated photonics, however, these injection-locking dynamics remain relatively untapped - despite significant potential for technological and scientific impact. Here, we demonstrate injection locking in a silicon photonic Brillouin laser. Injection locking of this monolithic device is remarkably robust, allowing us to tune the laser emission by a significant fraction of the Brillouin gain bandwidth. Harnessing these dynamics, we demonstrate amplification of small signals by more than 23 dB. Moreover, we demonstrate that the injection-locking dynamics of this system are inherently nonreciprocal, yielding unidirectional control and backscatter immunity in an all-silicon system. This device physics opens the door to strategies for phase-noise reduction, low-noise amplification, and backscatter immunity in silicon photonics.

More Details

Electrical power generation from moderate-temperature radiative thermal sources

Science

Davids, Paul D.; Kirsch, Jared K.; Starbuck, Andrew L.; Jarecki, Robert L.; Shank, Joshua S.; Peters, D.W.

Moderate-temperature thermal sources (100° to 400°C) that radiate waste heat are often the by-product of mechanical work, chemical or nuclear reactions, or information processing. We demonstrate conversion of thermal radiation into electrical power using a bipolar grating-coupled complementary metal-oxide-silicon (CMOS) tunnel diode. A two-step photon-assisted tunneling charge pumping mechanism results in separation of charge carriers in pn-junction wells leading to a large open-circuit voltage developed across a load. Electrical power generation from a broadband blackbody thermal source has been experimentally demonstrated with converted power densities of 27 to 61 microwatts per square centimeter for thermal sources between 250° and 400°C. Scalable, efficient conversion of radiated waste heat into electrical power can be used to reduce energy consumption or to power electronics and sensors.

More Details

A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator

Optics Express

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Derose, Christopher T.; Lentine, Anthony L.

Silicon photonics is a platform that enables densely integrated photonic components and systems and integration with electronic circuits. Depletion mode modulators designed on this platform suffer from a fundamental frequency response limit due to the mobility of carriers in silicon. Lithium niobate-based modulators have demonstrated high performance, but the material is difficult to process and cannot be easily integrated with other photonic components and electronics. In this manuscript, we simultaneously take advantage of the benefits of silicon photonics and the Pockels effect in lithium niobate by heterogeneously integrating silicon photonic-integrated circuits with thin-film lithium niobate samples. We demonstrate the most CMOS-compatible thin-film lithium niobate modulator to date, which has electro-optic 3 dB bandwidths of 30.6 GHz and half-wave voltages of 6.7 V×cm. These modulators are fabricated entirely in CMOS facilities, with the exception of the bonding of a thin-film lithium niobate sample post fabrication, and require no etching of lithium niobate.

More Details

A heterogeneously integrated silicon photonic/lithium niobate platform for RF photonics

AVFOP 2019 - Avionics and Vehicle Fiber-Optics and Photonics Conference

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Lentine, Anthony L.; DeRose, Christopher T.

We present a 30 GHz heterogeneously integrated silicon photonic/lithium niobate Mach-Zehnder modulator simultaneously utilizing the strong Pockels effect in LiNbO3 while also taking advantage of the ability for photonic/electronic integration and mass production associated with silicon photonics. Aside from the final step of bonding the LiNbO3, this modulator can be entirely fabricated using CMOS facilities.

More Details

Phase optimization of a silicon photonic two-dimensional electro-optic phased array

Optics InfoBase Conference Papers

Gehl, M.; Hoffman, Galen H.; Davids, Paul D.; Starbuck, Andrew L.; Dallo, Christina M.; Barber, Zeb; Kadlec, Emil; Mohan, R.K.; Crouch, Stephen; Long, Christopher M.

Phase errors in large optical phased arrays degrade beam quality and must be actively corrected. Using a novel, low-power electro-optic design with matched pathlengths, we demonstrate simplified optimization and reduced sensitivity to wavelength and temperature.

More Details

A Stable Ultrahigh Extinction Silicon Photonic Amplitude Modulator

2018 7th Annual IEEE Photonics Society Optical Interconnects Conference, OI 2018

Cai, Hong; Liu, Sheng; Pomerene, Andrew P.; Trotter, Douglas C.; Starbuck, Andrew L.; Dallo, Christina M.; Hood, Dana H.; DeRose, Christopher T.; Lentine, Anthony L.

We demonstrate the ultrahigh extinction operation of a silicon photonic (SiP) amplitude modulator (AM) employing a cascaded Mach-Zehnder interferometer. By carrying out optimization sweeps without significantly degrading the extinction, the SiP AM is robust to environment changes and maintained >52 dB extinction for >6 hrs.

More Details

Accurate photonic waveguide characterization using an arrayed waveguide structure

Optics Express

Gehl, M.; Boynton, Nicholas; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana H.; Trotter, Douglas C.; Lentine, Anthony L.; DeRose, Christopher T.

Measurement uncertainties in the techniques used to characterize loss in photonic waveguides becomes a significant issue as waveguide loss is reduced through improved fabrication technology. Typical loss measurement techniques involve environmentally unknown parameters such as facet reflectivity or varying coupling efficiencies, which directly contribute to the uncertainty of the measurement. We present a loss measurement technique, which takes advantage of the differential loss between multiple paths in an arrayed waveguide structure, in which we are able to gather statistics on propagation loss from several waveguides in a single measurement. This arrayed waveguide structure is characterized using a swept-wavelength interferometer, enabling the analysis of the arrayed waveguide transmission as a function of group delay between waveguides. Loss extraction is only dependent on the differential path length between arrayed waveguides and is therefore extracted independently from on and off-chip coupling efficiencies, which proves to be an accurate and reliable method of loss characterization. This method is applied to characterize the loss of the silicon photonic platform at Sandia Labs with an uncertainty of less than 0.06 dB/cm.

More Details

Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

Physical Review Applied

Shank, Joshua S.; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew L.; Howell, Stephen W.; Peters, D.W.; Davids, Paul D.

Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW/cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

More Details

Characterization of systematic process variation in a silicon photonic platform

6th IEEE Photonics Society Optical Interconnects Conference, OI 2017

Boynton, Nicholas; Pomerene, Andrew P.; Starbuck, Andrew L.; Lentine, Anthony L.; DeRose, Christopher T.

We present a quantitative analysis of the correlation of resonant wavelength variation with process variables, and find that 50% of the resonant wavelength variation for microrings is due to systematic process conditions. We also discuss the improvement of device uniformity by mitigating these systematic variations.

More Details

Substrate removal for ultra efficient silicon heater-modulators

6th IEEE Photonics Society Optical Interconnects Conference, OI 2017

Martinez, Nicolas J.D.; DeRose, Christopher T.; Jarecki, Robert L.; Starbuck, Andrew L.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.

We present our experimental results of ultra efficient (up to 2.16 nm/mW) thermally tunable modulators with n-Type heaters and the Si substrate removed. To our knowledge, this is the most efficient thermally tunable modulator demonstrated at 1550nm to date. We include results of externally heated modulators with commensurate performance enhancements through substrate removal.

More Details

Silicon photonic transceiver circuit for highspeed polarization-based discrete variable quantum key distribution

Optics Express

Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; Boynton, Nicholas; Urayama, Junji U.; Camacho, Ryan C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, Douglas C.; Davids, Paul D.; Lentine, Anthony L.

We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

More Details

High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

Optics Express

Liu, Sheng L.; Cai, Hong; Derose, C.T.; Davids, Paul D.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, D.C.; Camacho, Ryan C.; Urayama, Junji U.; Lentine, Anthony L.

We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480-1640 nm and 95 nm from 1280-1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

More Details

Active phase correction of high resolution silicon photonic arrayed waveguide gratings

Optics Express

Gehl, M.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; DeRose, C.

Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

More Details

Toward high fidelity spectral sensing and RF signal processing in silicon photonic and nano-opto-mechanical platforms

Proceedings of SPIE - The International Society for Optical Engineering

Siddiqui, Aleem M.; Reinke, Charles M.; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter

The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.

More Details

Demonstration of a silicon photonic transceiver for polarization-based discrete variable quantum key distribution

Optics InfoBase Conference Papers

Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; Boynton, Nicholas; Urayama, Junji U.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, Douglas C.; Davids, Paul D.; Lentine, Anthony L.

We demonstrate a silicon photonic transceiver circuit to implement polarization encoding/decoding for DV-QKD. The circuit is capable of encoding BB84 states with >30 dB PER and decoding with >20 dB ER.

More Details

High resolution silicon arrayed waveguide gratings for photonic signal processing applications

Optics InfoBase Conference Papers

Geh, M.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; DeRose, C.

We design, fabricate and demonstrate the operation of a compact, 1 GHz resolution silicon arrayed waveguide grating. Active phase correction allows for low channel cross-talk, enabling the demonstration of spectral shaping and RF signal analysis.

More Details

Ultrahigh extinction on-chip amplitude modulators with broadband operation

Optics InfoBase Conference Papers

Liu, Sheng L.; Cai, Hong; DeRose, Christopher T.; Davids, Paul D.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, Douglas C.; Urayama, Junji U.; Camacho, Ryan C.; Lentine, Anthony L.

We experimentally demonstrate amplitude modulators (AMs) with >65 dB extinction across over a 160 nm spectral range. The output optical phase response is also characterized when the amplitude is modulated.

More Details

Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

Physical Review Applied

Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew L.; Peters, D.W.; Davids, Paul D.

The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

More Details

Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Gehl, M.; Long, C.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Wright, J.; Melgaard, S.; Lentine, Anthony L.; Derose, C.

We demonstrate the operation of silicon micro-disk modulators at temperatures as low as 3.8K. We characterize the steady-state and high-frequency performance and look at the impact of doping concentration.

More Details

Active phase correction of compact, high resolution silicon photonic arrayed waveguide gratings

2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, AVFOP 2016

Gehl, M.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Derose, C.

We demonstrate compact silicon photonic arrayed waveguide gratings with channel spacing down to 1 GHz using active phase correction. The relative phase of each path within the device is directly measured using an interferometer, and two methods of phase optimization are implemented and compared.

More Details

Compact silicon photonic resonance-sssisted variable optical attenuator

Optics Express

Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

More Details

Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

Optics Express

Wang, Xiaoxi; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

More Details

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Optics Express

Martinez, Nicolas J.D.; DeRose, Christopher T.; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Trotter, Douglas C.; Davids, Paul D.

We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

More Details

An adiabatic/diabatic polarization beam splitter

5th IEEE Photonics Society Optical Interconnects Conference, OI 2016

Cai, Hong; Boynton, Nicholas; Lentine, Anthony L.; Pomerene, Andrew P.; Trotter, Douglas C.; Starbuck, Andrew L.; Davids, Paul D.; DeRose, Christopher T.

We demonstrate an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic mode, and diabatic for the transverse electric mode. The PBS has a simple structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

More Details

Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

Scientific Reports

Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew P.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

More Details

Racetrack resonator as a loss measurement platform for photonic components

Optics Express

Jones, Adam J.; DeRose, Christopher T.; Lentine, Anthony L.; Starbuck, Andrew L.; Pomerene, Andrew P.; Norwood, Robert A.

This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.

More Details

Precision Laser Annealing of Focal Plane Arrays

Bender, Daniel A.; DeRose, Christopher T.; Starbuck, Andrew L.; Verley, Jason V.; Jenkins, Mark W.

We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details

Efficient coefficient extraction from doublet resonances in microphotonic resonator transmission functions

CLEO: Science and Innovations, CLEO-SI 2015

Jones, Adam J.; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Pomerene, Andrew P.; Norwood, Robert A.

We develop a computationally efficient and robust algorithm to automatically extract the coefficients of doublet resonances and apply this technique to 418 resonances in ring resonator transmission data with a mean RMS deviation of 7.28 × 10-4. © OSA 2015.

More Details

Ultra-long duration time-resolved spectroscopy with enhanced temporal resolution of high-Q nano-optomechanical modes using interleaved asynchronous optical sampling (I-ASOPS)

Conference on Lasers and Electro-Optics Europe - Technical Digest

Siddiqui, Aleem; Jarecki, Robert L.; Starbuck, Andrew L.; Cox, Jonathan A.

Transient responses of high-Q nano-optomechanical modes are characterized with Interleaved-ASOPS, where pump-induced transients are interrogated with multiple probe pulses. Temporal resolution increases linearly with probe-pulse-number beyond conventional ASOPS, achieving sub-ps resolution over μs durations.

More Details

Precision laser annealing of silicon devices for enhanced electro-optic performance

Proceedings of SPIE - The International Society for Optical Engineering

Bender, Daniel A.; DeRose, Christopher T.; Starbuck, Andrew L.; Verley, Jason V.; Jenkins, Mark W.

We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. © 2014 SPIE.

More Details

Control of integrated micro-resonator wavelength via balanced homodyne locking

Optics Express

Cox, Jonathan A.; Lentine, Anthony L.; Trotter, Douglas C.; Starbuck, Andrew L.

We describe and experimentally demonstrate a method for active control of resonant modulators and filters in an integrated photonics platform. Variations in resonance frequency due to manufacturing processes and thermal fluctuations are corrected by way of balanced homodyne locking. The method is compact, insensitive to intensity fluctuations, minimally disturbs the micro-resonator, and does not require an arbitrary reference to lock. We demonstrate long-term stable locking of an integrated filter to a laser swept over 1.25 THz. In addition, we show locking of a modulator with low bit error rate while the chip temperature is varied from 5 to 60° C. © 2014 Optical Society of America.

More Details

Energy-efficient, digitally-driven "fat pipe" silicon photonic circuit switch in the UCSD MORDIA data-center network

Optics InfoBase Conference Papers

Aguinaldo, Ryan; Forencich, Alex; DeRose, Christopher T.; Lentine, Anthony L.; Trotter, Douglas C.; Starbuck, Andrew L.; Fainman, Yeshaiahu; Porter, George; Papen, George; Mookherjea, Shayan

Using a compact (0.03 mm2) silicon photonic thermo-optic switch with five cascaded thermotopic phase-shifters, we demonstrate low insertion loss, low power, microsecond-scale cross-bar switching of twenty wavelength channels, each carrying 10 Gbit/second data concurrently. © 2014 OSA.

More Details

Characterization of a silicon-photonic wideband switch in UCSD's MORDIA ring network

2014 IEEE Optical Interconnects Conference, OI 2014

Aguinaldo, Ryan; Forencich, Alex; DeRose, Christopher T.; Lentine, Anthony L.; Starbuck, Andrew L.; Fainman, Yeshaiahu; Porter, George; Papen, George; Mookherjea, Shayan

We demonstrate and investigate concurrent switching of twenty 10-Gbps channels using a silicon Mach-Zehnder interferometer switching structure with low on-state loss, low power, and microsecond-scale switching time. © 2014 IEEE.

More Details

A silicon photonic channelized spectrum monitor for UCSD's multi-wavelength ring network

Optics InfoBase Conference Papers

Aguinaldo, Ryan; Weigel, Peter; Grant, Hannah; DeRose, Christopher T.; Lentine, Anthony L.; Pomerene, Andrew; Starbuck, Andrew L.; Tkacenko, Andre; Mookherjea, Shayan

A compact silicon photonic channelized optical spectrum monitor is designed and realized, which can replace a large rack-mounted OSA's channel power monitoring functionality, and the signal processing algorithm underlying its operation is described. © 2014 OSA.

More Details
90 Results
90 Results