Publications

12 Results
Skip to search filters

Evaluation of Design & Analysis Code, CACTUS, for Predicting Crossflow Hydrokinetic Turbine Performance

Wosnik, Martin W.; Bachant, Pete B.; Neary, Vincent S.; Murphy, Andrew W.

CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements in a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.

More Details

Damping optimization for wave energy converters with compressible volumes

Sandia journal manuscript; Not yet accepted for publication

Bacelli, Giorgio B.; Neary, Vincent S.; Murphy, Andrew W.

The addition of a compressible degree of freedom (CDOF) to a wave energy converter (WEC)-which results in a compressible WEC-has been shown to significantly increase power absorption compared to a rigid WEC of the same shape and mass for a variety of architectures. This study demonstrates that a compressible point absorber, with a passive power-take-off (PTO) and optimized damping, can also achieve equal or better performance levels than an optimally controlled rigid point absorber (with the same shape and mass) using reactive power from the PTO. Wave energy is converted to mechanical energy in both cases using a linear damper PTO, with the PTO coefficient optimized for each resonance frequency and compressible volume. The large compressible volume required to tune the compressible point absorber to the desired frequency is a practical limitation that needs to be addressed with further research, especially for low frequencies. While realistic, these auxiliary units would increase the CapEx and OpEx costs, potentially reducing the aforementioned benefits gained by CDOF. However, alternative approaches can be developed to implement CDOF without the large compressible volume requirements, including the development of flexible surface panels tuned with mechanical springs.

More Details

Compressible degree of freedom (CDOF): A potential strategy for improving wave energy capture

Bacelli, Giorgio B.; Neary, Vincent S.; Murphy, Andrew W.

The addition of a compressible degree of freedom (CDOF) has been shown to significantly increase the power absorption compared to a traditional rigid WEC of the same shape and mass for a variety of architectures. The present study demonstrates that a compressible point absorber, with a passive power-take-off (PTO) and optimized damping, can also achieve at the same performance levels or better than an optimally controlled rigid point absorber using reactive power from the PTO. Eliminating the need for a reactive PTO would sub- stantially reduce costs by reducing PTO design complexity. In addition, it would negate the documented problems of reactive PTO efficiencies on absorbed power. Improvements to per- formance were quantified in the present study by comparing a compressible point absorber to a conventional rigid one with the same shape and mass. Wave energy is converted to mechan- ical energy in both cases using a linear damper PTO, with the PTO coefficient optimized for each resonance frequency and compressible volume. The large compressible volumes required to tune the compressible point absorber to the desired frequency are a practical limitation that needs to be addressed with further research; especially for low frequencies. If fact, all compressible volumes exceed the submerged volume of the point absorber by significant amounts; requiring auxiliary compressible volume storage units that are connected to the air chamber in the submerged portion of the point absorber. While realistic, these auxiliary units would increase the Cap Ex and Op Ex costs, potentially reducing the aforementioned benefits gained by CDOF. However, alternative approaches can be developed to implement CDOF without the large compressible volume requirements, including the development of flexible surface panels tuned with mechanical springs.

More Details
12 Results
12 Results