Publications

46 Results
Skip to search filters

System Integration Analysis for Modular Solid-State Substations

Mueller, Jacob M.; Kaplar, Robert K.; Flicker, Jack D.; Garcia Rodriguez, Luciano A.; Binder, Andrew B.; Ropp, Michael E.; Gill, Lee G.; Palacios, Felipe N.; Rashkin, Lee; Dow, Andrew R.; Elliott, Ryan T.

Structural modularity is critical to solid-state transformer (SST) and solid-state power substation (SSPS) concepts, but operational aspects related to this modularity are not yet fully understood. Previous studies and demonstrations of modular power conversion systems assume identical module compositions, but dependence on module uniformity undercuts the value of the modular framework. In this project, a hierarchical control approach was developed for modular SSTs which achieves system-level objectives while ensuring equitable power sharing between nonuniform building block modules. This enables module replacements and upgrades which leverage circuit and device technology advancements to improve system-level performance. The functionality of the control approach is demonstrated in detailed time-domain simulations. Results of this project provide context and strategic direction for future LDRD projects focusing on technologies supporting the SST crosscut outcome of the resilient energy systems mission campaign.

More Details

Demonstration of >6.0-kV Breakdown Voltage in Large Area Vertical GaN p-n Diodes With Step-Etched Junction Termination Extensions

IEEE Transactions on Electron Devices

Yates, Luke Y.; Gunning, Brendan P.; Crawford, Mary H.; Steinfeldt, Jeffrey A.; Smith, Michael; Abate, Vincent M.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Binder, Andrew B.; Allerman, A.A.; Kaplar, Robert K.

Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ$\cdot$cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 mΩ$\cdot$cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. In this work, these results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of <1×1015 cm–3 and a carefully designed four-zone junction termination extension.

More Details

A discussion on various experimental methods of impact ionization coefficient measurement in GaN

AIP Advances

Ji, Dong; Zeng, Ke; Bian, Zhengliang; Shankar, Bhawani; Gunning, Brendan P.; Binder, Andrew B.; Dickerson, Jeramy R.; Aktas, Ozgur; Anderson, Travis J.; Kaplar, Robert K.; Chowdhury, Srabanti

Impact ionization coefficients play a critical role in semiconductors. In addition to silicon, silicon carbide and gallium nitride are important semiconductors that are being seen more as mainstream semiconductor technologies. As a reflection of the maturity of these semiconductors, predictive modeling has become essential to device and circuit designers, and impact ionization coefficients play a key role here. Recently, several studies have measured impact ionization coefficients. We dedicated the first part of our study to comparing three experimental methods to estimate impact ionization coefficients in GaN, which are all based on photomultiplication but feature characteristic differences. The first method inserts an InGaN hole-injection layer, the accuracy of which is challenged by the dominance of ionization in InGaN, leading to possible overestimation of the coefficients. The second method utilizes the Franz-Keldysh effect for hole injection but not for electrons, where the mixed injection of induced carriers would require a margin of error. The third method uses complementary p-n and n-p structures that have been at the basis of this estimation in Si and SiC and leans on the assumption of a constant electric field, and any deviation would require a margin of error. In the second part of our study, we evaluated the models using recent experimental data from diodes demonstrating avalanche breakdown.

More Details

Analysis of the dependence of critical electric field on semiconductor bandgap

Journal of Materials Research

Slobodyan, Oleksiy; Flicker, Jack D.; Dickerson, Jeramy R.; Shoemaker, Jonah; Binder, Andrew B.; Smith, Trevor S.; Goodnick, Stephen; Kaplar, Robert K.; Hollis, Mark

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

More Details

Identification of the defect dominating high temperature reverse leakage current in vertical GaN power diodes through deep level transient spectroscopy

Applied Physics Letters

DasGupta, Sandeepan D.; Slobodyan, O.S.; Smith, Trevor S.; Binder, Andrew B.; Flicker, Jack D.; Kaplar, Robert K.; Mueller, Jacob M.; Garcia Rodriguez, Luciano A.; Atcitty, Stanley A.

Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. Here, we use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ~ 1500 V. DLTS reveals three energy levels that are at ~0.6 eV (highest density), ~0.27 eV (lowest density), and ~45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance–voltage measurement tests (C–V) at multiple temperatures enables trap density evaluation, and the ~0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert K.; Binder, Andrew B.; Yates, Luke Y.; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley A.; Abate, Vincent M.; Pickrell, Gregory P.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Monson, Todd M.; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan A.; Cooper, James A.

Abstract not provided.

Vertical GaN PN Diodes for Grid Resiliency and Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Vertical GaN Devices for Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory P.; Dickerson, Jeramy R.; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth A.; Baca, Albert G.; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed R.; Binder, Andrew B.; Yates, Luke Y.; Slobodyan, Oleksiy S.; Sharps, Paul; Simmons, Jerry S.; Tsao, Jeffrey Y.; Hollis, Mark A.; Johnson, Noble J.; Jones, Ken J.; Pavlidis, Dimitris P.; Goretta, Ken G.; Nemanich, Bob N.; Goodnick, Steve G.; Chowdhury, Srabanti C.

Abstract not provided.

2021 Annual Progress Report: Vertical GaN Device Development

Binder, Andrew B.

This project is part of a multi-lab consortium that leverages U.S. research expertise and facilities at national labs and universities to significantly advance electric drive power density and reliability, while simultaneously reducing cost. The final objective of the consortium is to develop a 100 kW traction drive system that achieves 33 kW/L, has an operational life of 300,000 miles, and a cost of less than 6 dollars/kW. One element of the system is a 100 kW inverter with a power density of 100 kW/L and a cost of 2.7 dollars/kW. New materials such as wide-bandgap semiconductors, soft magnetic materials, and ceramic dielectrics, integrated using multi-objective co-optimization design techniques, will be utilized to achieve these program goals. This project focuses on a subset of the power electronics work within the consortium, specifically the design, fabrication, and evaluation of vertical GaN power devices suitable for automotive applications.

More Details

Vertical GaN Power Electronics - Opportunities and Challenges (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, L.G.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; M., Porter M.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Etched and Regrown Vertical GaN Junction Barrier Schottky Diodes

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Binder, Andrew B.; Pickrell, Gregory P.; Allerman, A.A.; Dickerson, Jeramy R.; Yates, Luke Y.; Steinfeldt, Jeffrey A.; Glaser, Caleb E.; Crawford, Mary H.; Armstrong, Andrew A.; Sharps, Paul; Kaplar, Robert K.

This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Parter, M.P.; Zeng, K.Z.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Simulation and Design of Step-Etched Junction Termination Extensions for GaN Power Diodes

4th Electron Devices Technology and Manufacturing Conference, EDTM 2020 - Proceedings

Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Gunning, Brendan P.; Kaplar, Robert K.

Proper edge termination is required to reach large blocking voltages in vertical power devices. Limitations in selective area p-type doping in GaN restrict the types of structures that can be used for this purpose. A junction termination extension (JTE) can be employed to reduce field crowding at the junction periphery where the charge in the JTE is designed to sink the critical electric field lines at breakdown. One practical way to fabricate this structure in GaN is by a step-etched single-zone or multi-zone JTE where the etch depths and doping levels are used to control the charge in the JTE. The multi-zone JTE is beneficial for increasing the process window and allowing for more variability in parameter changes while still maintaining a designed percentage of the ideal breakdown voltage. Impact ionization parameters reported in literature for GaN are compared in a simulation study to ascertain the dependence on breakdown performance. Two 3-zone JTE designs utilizing different impact ionization coefficients are compared. Simulations confirm that the choice of impact ionization parameters affects both the predicted breakdown of the device as well as the fabrication process variation tolerance for a multi-zone JTE. Regardless of the impact ionization coefficients utilized, a step-etched JTE has the potential to provide an efficient, controllable edge termination design.

More Details

Bevel edge termination for vertical GaN power diodes

2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2019

Binder, Andrew B.; Dickerson, Jeramy R.; Crawford, Mary H.; Pickrell, Gregory P.; Allerman, A.A.; Sharps, Paul; Kaplar, Robert K.

Edge termination for vertical power devices presents a significant challenge, as improper termination can result in devices with a breakdown voltage significantly less than the ideal infinite-planar case. Edge termination for vertical GaN devices is particularly challenging due to limitations in ion implantation for GaN, and as such this work investigates a bevel edge termination technique that does not require implantation and has proven to be effective for Si and SiC power devices. However, due to key differences between GaN versus Si and SiC p-n junctions (specifically, a grown versus an implanted junction), this technology needs to be reevaluated for GaN. Simulation results suggest that by leveraging the effective bevel angle relationship, a 10-15° physical bevel angle can yield devices with 85-90% of the ideal breakdown voltage. Results are presented for a negative bevel edge termination on an ideally 2 kV vertical GaN p-n diode.

More Details
46 Results
46 Results