In a traditional data-processing pipeline, waveforms are acquired, a detector makes the signal detections (i.e., arrival times, slownesses, and azimuths) and passes them to an associator. The associator then links the detections to the fitting-event hypotheses to generate an event bulletin. Most of the time, this traditional pipeline requires substantial human-analyst involvement to improve the quality of the resulting event bulletin. For the year 2017, for example, International Data Center (IDC) analysts rejected about 40% of the events in the automatic bulletin and manually built 30% of the legitimate events. We propose an iterative processing framework (IPF) that includes a new data-processing module that incorporates automatic analyst behaviors (auto analyst [AA]) into the event-building pipeline. In the proposed framework, through an iterative process, the AA takes over many of the tasks traditionally performed by human analysts. These tasks can be grouped into two major processes: (1) evaluating small events with a low number of location-defining arrival phases to improve their formation; and (2) scanning for and exploiting unassociated arrivals to form potential events missed by previous association runs. To test the proposed framework, we processed a two-week period (15–28 May 2010) of the signal-detections dataset from the IDC. Comparison with an expert analyst-reviewed bulletin for the same time period suggests that IPF performs better than the traditional pipelines (IDC and baseline pipelines). Most of the additional events built by the AA are low-magnitude events that were missed by these traditional pipelines. The AA also adds additional signal detections to existing events, which saves analyst time, even if the event locations are not significantly affected.
The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ∼2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.
GeoTess is a model parameterization and software support library that manages the construction, population, storage, and interrogation of data stored in 2D and 3D Earth models. The software is available in Java and C++, with a C interface to the C++ library. The software has been tested on Linux, Mac, Sun, and PC platforms. It is open source and is available online (see Data and Resources).