Publications

53 Results
Skip to search filters

Literature Review of Electromagnetic Pulse (EMP) and Geomagnetic Disturbance (GMD) Effects on Oil and Gas Pipeline Systems

Kelic, Andjelka; Pierce-Montague, Davyn P.; Robinett, Logan N.; Stamber, Kevin L.; Guttromson, Ross G.

This document summarizes the findings of a review of published literature regarding the potential impacts of electromagnetic pulse (EMP) and geomagnetic disturbance (GMD) phenomena on oil and gas pipeline systems. The impacts of telluric currents on pipelines and their associated cathodic protection systems has been well studied. The existing literature describes implications for corrosion protection system design and monitoring to mitigate these impacts. Effects of an EMP on pipelines is not a thoroughly explored subject. Most directly related articles only present theoretical models and approaches rather than specific analyses and in-field testing. Literature on SCADA components and EMP is similarly sparse and the existing articles show a variety of impacts to control system components that range from upset and damage to no effect. The limited research and the range of observed impacts for the research that has been published suggests the need for additional work on GMD and EMP and natural gas SCADA components.

More Details

Sensitivity of Infrastructure Sectors to the Disruption of Commercial Electric Power

Stamber, Kevin L.; Aamir, Munaf S.; Beyeler, Walter E.; Brown, Theresa J.; Bynum, Leo B.; Corbet, Thomas F.; Flanagan, Tatiana P.; Kelic, Andjelka; Pate, Ronald P.; Tenney, Craig M.; Tidwell, Vincent C.

Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.

More Details

NFD Methodology Report

Beyeler, Walter E.; Stamber, Kevin L.; Kelic, Andjelka

The NetFlow Dynamics (NFD) model was developed for estimating the availability of a commodity supplied by a national- or regional-scale infrastructure following unexpected disruption of one or more of its components. The large scope of the disruptions of interest produce changes in availability lasting days to weeks. Consequently, the model does not resolve daily variations in system state and does not include the long-term processes that cause infrastructures to evolve as assets are added and removed according to owners ’planning decisions. NFD simulates fluid flow, including petroleum and other incompressible fluids, as well as natural gas and other compressible fluids, through pipeline networks characterized by limits on transmission capacity and storage. It was designed to enable efficient exploration of possible transmission system responses to large-scale disruptions lasting for days or longer. The model formulation reflects constraints on transmission and storage capacity imposed by the physical system assets. Those capacity limits are input parameters and are not derived from more basic system properties such as pipeline diameters and compressor power. A system’s response to a large disruption is controlled by operational decisions as well as damage to physical assets. The NFD model formulation allows users to efficiently consider alternative scenarios about the way remaining capacity might be used so that the analysis result appropriately reflects uncertainties about operator response.

More Details

Cyber risk in critical infrastructure

Performance Evaluation Review

Kelic, Andjelka

Existing approaches to evaluating cyber risk are summarized and explored for their applicability to critical infrastructure. The approaches cluster in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. A hybrid approach can account for cyber risk in critical infrastructure and allow for allocation of limited resources across the entirety of the risk spectrum.

More Details

Literature Review on Modeling Cyber Networks and Evaluating Cyber Risks

Kelic, Andjelka; Campbell, Philip L.

The National Infrastructure Simulations and Analysis Center (NISAC) conducted a literature review on modeling cyber networks and evaluating cyber risks. The literature review explores where modeling is used in the cyber regime and ways that consequence and risk are evaluated. The relevant literature clusters in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. This document summarizes the different literature viewpoints and explores their applicability to securing enterprise networks.

More Details

Modeling the Internet

Kelic, Andjelka; Mitchell, Michael D.; Shirah, Donald N.

The National Infrastructure Simulations and Analysis Center (NISAC) has developed a nationwide model of the Internet to study the potential impact of the loss of physical facilities on the network and on other infrastructures that depend on the Internet for services. The model looks at the Internet from the perspective of Internet Service Providers (ISPs) and their connectivity and can be used to determine how the network connectivity could be modified to assist in mitigating an event. In addition the model could be used to explore how portions of the network could be made more resilient to disruptive events.

More Details

Telecom Modeling with ChatterBell

Jrad, Ahmad M.; Kelic, Andjelka

This document provides a description and user manual for the ChatterBell voice telecom modeling and simulation capability. The intended audience consists of network planners and practitioners who wish to use the tool to model a particular voice network and analyze its behavior under varying assumptions and possible failure conditions. ChatterBell is built on top of the N-SMART voice simulation and visualization suite that was developed through collaboration between Sandia National Laboratories and Bell Laboratories of Lucent Technologies. The new and improved modeling and simulation tool has been modified and modernized to incorporate the latest development in the telecom world including the widespread use of VoIP technology. In addition, ChatterBell provides new commands and modeling capabilities that were not available in the N-SMART application.

More Details

Interdependencies in critical infrastructure modeling

Performance Evaluation Review

Kelic, Andjelka

Critical infrastructures are highly interconnected both within an infrastructure sector and with one another. In many cases, there are also cyber systems that provide information or control to those infrastructures. Those dependencies can lead to unexpected consequences in the event of an incident. Simulation models that account for dependencies are critical to gain insight. This document provides an overview of accounting for dependencies in constructing simulation models and some of the associated challenges. The 9-1-1 system provides an example of a highly connected critical infrastructure system.

More Details

A Generalized Framework for Modeling Next Generation 911 Implementations

Kelic, Andjelka; Aamir, Munaf S.; Kelic, Andjelka; Jrad, Ahmad M.; Mitchell, Roger M.

This document summarizes the current state of Sandia 911 modeling capabilities and then addresses key aspects of Next Generation 911 (NG911) architectures for expansion of existing models. Analysis of three NG911 implementations was used to inform heuristics ,associated key data requirements, and assumptions needed to capture NG911 architectures in the existing models. Modeling of NG911 necessitates careful consideration of its complexity and the diversity of implementations. Draft heuristics for constructing NG911 models are pres ented based on the analysis along with a summary of current challenges and ways to improve future NG911 modeling efforts. We found that NG911 relies on E nhanced 911 (E911) assets such as 911 selective routers to route calls originating from traditional tel ephony service which are a majority of 911 calls. We also found that the diversity and transitional nature of NG911 implementations necessitates significant and frequent data collection to ensure that adequate model s are available for crisis action support.

More Details

Distributed Energy Systems: Security Implications of the Grid of the Future

Stamber, Kevin L.; Kelic, Andjelka; Taylor, Robert A.; Henry, Jordan M.; Stamp, Jason E.

Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.

More Details

Creating interaction environments: Defining a two-sided market model of the development and dominance of platforms

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Beyeler, Walter E.; Kelic, Andjelka; Finley, Patrick D.; Aamir, Munaf S.; Outkin, Alexander V.; Conrad, Stephen H.; Mitchell, Michael D.; Vargas, Vanessa N.

Interactions between individuals, both economic and social, are increasingly mediated by technological systems. Such platforms facilitate interactions by controlling and regularizing access, while extracting rent from users. The relatively recent idea of two-sided markets has given insights into the distinctive economic features of such arrangements, arising from network effects and the power of the platform operator. Simplifications required to obtain analytical results, while leading to basic understanding, prevent us from posing many important questions. For example we would like to understand how platforms can be secured when the costs and benefits of security differ greatly across users and operators, and when the vulnerabilities of particular designs may only be revealed after they are in wide use. We define an agent-based model that removes many constraints limiting existing analyses (such as uniformity of users, free and perfect information), allowing insights into a much larger class of real systems. © 2012 Springer-Verlag.

More Details

Earthquake warning system for infrastructures : a scoping analysis

Kelic, Andjelka; Stamber, Kevin L.; Brodsky, Nancy S.; Vugrin, Eric D.; Corbet, Thomas F.; O'Connor, Sharon L.

This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

More Details

Assessing the Near-Term Risk of Climate Uncertainty:Interdependencies among the U.S. States

Backus, George A.; Trucano, Timothy G.; Robinson, David G.; Adams, Brian M.; Richards, Elizabeth H.; Siirola, John D.; Boslough, Mark B.; Taylor, Mark A.; Conrad, Stephen H.; Kelic, Andjelka; Roach, Jesse D.; Warren, Drake E.; Ballantine, Marissa D.; Stubblefield, W.A.; Snyder, Lillian A.; Finley, Ray E.; Horschel, Daniel S.; Ehlen, Mark E.; Klise, Geoffrey T.; Malczynski, Leonard A.; Stamber, Kevin L.; Tidwell, Vincent C.; Vargas, Vanessa N.; Zagonel, Aldo A.

Abstract not provided.

Science, Technology, Engineering, and Mathematics (STEM) career attractiveness system dynamics modeling

Kelic, Andjelka; Zagonel, Aldo A.

A system dynamics model was developed in response to the apparent decline in STEM candidates in the United States and a pending shortage. The model explores the attractiveness of STEM and STEM careers focusing on employers and the workforce. Policies such as boosting STEM literacy, lifting the H-1B visa cap, limiting the offshoring of jobs, and maintaining training are explored as possible solutions. The system is complex, with many feedbacks and long time delays, so solutions that focus on a single point of the system are not effective and cannot solve the problem. A deeper understanding of parts of the system that have not been explored to date is necessary to find a workable solution.

More Details

Cyber and physical infrastructure interdependencies

Warren, Drake E.; Kelic, Andjelka; Phillips, Laurence R.

The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

More Details

Workforce management strategies in a disaster scenario

Kelic, Andjelka; Turk, Adam L.

A model of the repair operations of the voice telecommunications network is used to study labor management strategies under a disaster scenario where the workforce is overwhelmed. The model incorporates overtime and fatigue functions and optimizes the deployment of the workforce based on the cost of the recovery and the time it takes to recover. The analysis shows that the current practices employed in workforce management in a disaster scenario are not optimal and more strategic deployment of that workforce is beneficial.

More Details

Dynamic changes in subscriber behavior and their impact on the telecom network in cases of emergency

Proceedings - IEEE Military Communications Conference MILCOM

Jrad, Ahmad; O'Reilly, Gerard; Richman, Steven H.; Conrad, Stephen H.; Kelic, Andjelka

The telecommunication network is recognized by the federal government as one of the critical national infrastructures that must be maintained and protected against debilitating attacks. We have previously shown how failures in the telecommunication network can quickly lead to telecommunication congestion and to extended delays in successful call completion. However, even if the telecom network remains fully operational, the special telecommunication demands that materialize at times of emergencies, and dynamically change based on subscriber behavior, can also adversely affect the performance of the overall telecommunication network. The Network Simulation Modeling and Analysis Research Tool (N-SMART) has been developed by Bell Labs as part of its work with the National Infrastructure Simulation and Analysis Center. This center is a joint program at Sandia National Laboratories and Los Alamos National Laboratory, funded and managed by the Department of Homeland Security's (DHS) Preparedness Directorate. N-SMART is a discrete event (call level) telecom model that simulates capacities, blocking levels, retrials, and time to complete calls for both wireline and wireless networks. N-SMART supports the capability of simulating subscriber reattempt behaviour under various scenarios. Using this capability we show how the network can be adversely impacted by sudden changes in subscriber behavior. We also explore potential solutions and ways of mitigating those impacts.

More Details
53 Results
53 Results