This document summarizes the findings of a review of published literature regarding the potential impacts of electromagnetic pulse (EMP) and geomagnetic disturbance (GMD) phenomena on oil and gas pipeline systems. The impacts of telluric currents on pipelines and their associated cathodic protection systems has been well studied. The existing literature describes implications for corrosion protection system design and monitoring to mitigate these impacts. Effects of an EMP on pipelines is not a thoroughly explored subject. Most directly related articles only present theoretical models and approaches rather than specific analyses and in-field testing. Literature on SCADA components and EMP is similarly sparse and the existing articles show a variety of impacts to control system components that range from upset and damage to no effect. The limited research and the range of observed impacts for the research that has been published suggests the need for additional work on GMD and EMP and natural gas SCADA components.
Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.
The NetFlow Dynamics (NFD) model was developed for estimating the availability of a commodity supplied by a national- or regional-scale infrastructure following unexpected disruption of one or more of its components. The large scope of the disruptions of interest produce changes in availability lasting days to weeks. Consequently, the model does not resolve daily variations in system state and does not include the long-term processes that cause infrastructures to evolve as assets are added and removed according to owners ’planning decisions. NFD simulates fluid flow, including petroleum and other incompressible fluids, as well as natural gas and other compressible fluids, through pipeline networks characterized by limits on transmission capacity and storage. It was designed to enable efficient exploration of possible transmission system responses to large-scale disruptions lasting for days or longer. The model formulation reflects constraints on transmission and storage capacity imposed by the physical system assets. Those capacity limits are input parameters and are not derived from more basic system properties such as pipeline diameters and compressor power. A system’s response to a large disruption is controlled by operational decisions as well as damage to physical assets. The NFD model formulation allows users to efficiently consider alternative scenarios about the way remaining capacity might be used so that the analysis result appropriately reflects uncertainties about operator response.
Existing approaches to evaluating cyber risk are summarized and explored for their applicability to critical infrastructure. The approaches cluster in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. A hybrid approach can account for cyber risk in critical infrastructure and allow for allocation of limited resources across the entirety of the risk spectrum.
The National Infrastructure Simulations and Analysis Center (NISAC) conducted a literature review on modeling cyber networks and evaluating cyber risks. The literature review explores where modeling is used in the cyber regime and ways that consequence and risk are evaluated. The relevant literature clusters in three different spaces: network security, cyber-physical, and mission assurance. In all approaches, some form of modeling is utilized at varying levels of detail, while the ability to understand consequence varies, as do interpretations of risk. This document summarizes the different literature viewpoints and explores their applicability to securing enterprise networks.
The National Infrastructure Simulations and Analysis Center (NISAC) has developed a nationwide model of the Internet to study the potential impact of the loss of physical facilities on the network and on other infrastructures that depend on the Internet for services. The model looks at the Internet from the perspective of Internet Service Providers (ISPs) and their connectivity and can be used to determine how the network connectivity could be modified to assist in mitigating an event. In addition the model could be used to explore how portions of the network could be made more resilient to disruptive events.
This document provides a description and user manual for the ChatterBell voice telecom modeling and simulation capability. The intended audience consists of network planners and practitioners who wish to use the tool to model a particular voice network and analyze its behavior under varying assumptions and possible failure conditions. ChatterBell is built on top of the N-SMART voice simulation and visualization suite that was developed through collaboration between Sandia National Laboratories and Bell Laboratories of Lucent Technologies. The new and improved modeling and simulation tool has been modified and modernized to incorporate the latest development in the telecom world including the widespread use of VoIP technology. In addition, ChatterBell provides new commands and modeling capabilities that were not available in the N-SMART application.
Critical infrastructures are highly interconnected both within an infrastructure sector and with one another. In many cases, there are also cyber systems that provide information or control to those infrastructures. Those dependencies can lead to unexpected consequences in the event of an incident. Simulation models that account for dependencies are critical to gain insight. This document provides an overview of accounting for dependencies in constructing simulation models and some of the associated challenges. The 9-1-1 system provides an example of a highly connected critical infrastructure system.
This document summarizes the current state of Sandia 911 modeling capabilities and then addresses key aspects of Next Generation 911 (NG911) architectures for expansion of existing models. Analysis of three NG911 implementations was used to inform heuristics ,associated key data requirements, and assumptions needed to capture NG911 architectures in the existing models. Modeling of NG911 necessitates careful consideration of its complexity and the diversity of implementations. Draft heuristics for constructing NG911 models are pres ented based on the analysis along with a summary of current challenges and ways to improve future NG911 modeling efforts. We found that NG911 relies on E nhanced 911 (E911) assets such as 911 selective routers to route calls originating from traditional tel ephony service which are a majority of 911 calls. We also found that the diversity and transitional nature of NG911 implementations necessitates significant and frequent data collection to ensure that adequate model s are available for crisis action support.
Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.