Publications

22 Results
Skip to search filters

Grain Boundary Diffusion Characterized by KPFM

Baca, Ana B.; Brumbach, Michael T.; Vianco, Paul T.; Patterson, Pat P.; Scrymgeour, David S.

Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).

More Details

Materials Chemistry and Performance of Silicone-Based Replicating Compounds

Brumbach, Michael T.; Mirabal, Alex J.; Kalan, Michael K.; Baca, Ana B.; hale, kevin h.

Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

More Details
22 Results
22 Results