New patch smoothers or relaxation techniques are developed for solving linear matrix equations coming from systems of discretized partial differential equations (PDEs). One key linear solver challenge for many PDE systems arises when the resulting discretization matrix has a near null space that has a large dimension, which can occur in generalized magnetohydrodynamic (GMHD) systems. Patch-based relaxation is highly effective for problems when the null space can be spanned by a basis of locally supported vectors. The patch-based relaxation methods that we develop can be used either within an algebraic multigrid (AMG) hierarchy or as stand-alone preconditioners. These patch-based relaxation techniques are a form of well-known overlapping Schwarz methods where the computational domain is covered with a series of overlapping sub-domains (or patches). Patch relaxation then corresponds to solving a set of independent linear systems associated with each patch. In the context of GMHD, we also reformulate the underlying discrete representation used to generate a suitable set of matrix equations. In general, deriving a discretization that accurately approximates the curl operator and the Hall term while also producing linear systems with physically meaningful near null space properties can be challenging. Unfortunately, many natural discretization choices lead to a near null space that includes non-physical oscillatory modes and where it is not possible to span the near null space with a minimal set of locally supported basis vectors. Further discretization research is needed to understand the resulting trade-offs between accuracy, stability, and ease in solving the associated linear systems.
This document provides very basic background information and initial enabling guidance for computational analysts to develop and utilize GitOps practices within the Common Engineering Environment (CEE) and High Performance Computing (HPC) computational environment at Sandia National Laboratories through GitLab/Jacamar runner based workflows.
The representation of material heterogeneity (also referred to as "spatial variation") plays a key role in the material failure simulation method used in ALEGRA. ALEGRA is an arbitrary Lagrangian-Eulerian shock and multiphysics code developed at Sandia National Laboratories and contains several methods for incorporating spatial variation into simulations. A desirable property of a spatial variation method is that it should produce consistent stochastic behavior regardless of the mesh used (a property referred to as "mesh independence"). However, mesh dependence has been reported using the Weibull distribution with ALEGRA's spatial variation method. This report describes efforts towards providing additional insight into both the theory and numerical experiments investigating such mesh dependence. In particular, we have implemented a discrete minimum order statistic model with properties that are theoretically mesh independent.
This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.
Understanding the effects of contaminant plasmas generated within the Z machine at Sandia is critical to understanding current loss mechanisms. The plasmas are generated at the accelerator electrode surfaces and include desorbed species found in the surface and substrate of the walls. These desorbed species can become ionized. The timing and location of contaminant species desorbed from the wall surface depend non-linearly on the local surface temperature. For accurate modeling, it is necessary to utilize wall heating models to estimate the amount and timing of material desorption. One of these heating mechanisms is Joule heating. We propose several extended semi-analytic magnetic diffusion heating models for computing surface Joule heating and demonstrate their effects for several representative current histories. We quantitatively assess under what circumstances these extensions to classical formulas may provide a validatable improvement to the understanding of contaminant desorption timing.
In this paper we present an adjustment to traditional ALE discretizations of resistive MHD where we do not neglect the time derivative of the electric displacement field. This system is referred to variously as a perfect electromagnetic fluid or a single fluid plasma although we refer to the system as Full Maxwell Hydrodynamics (FMHD) in order to evoke its similarities to resistive Magnetohydrodynamics (MHD). Unlike the MHD system the characteristics of this system do not become arbitrarily large in the limit of low densities. In order to take advantage of these improved characteristics of the system we must tightly couple the electromagnetics into the Lagrangian motion and do away with more traditional operator splitting. We provide a number of verification tests to demonstrate both accuracy of the method and an asymptotic preserving (AP) property. In addition we present a prototype calculation of a Z-pinch and find very good agreement between our algorithm and resistive MHD. Further, FMHD leads to a large performance gain (approximately 4.6x speed up) compared to resistive MHD. We unfortunately find our proposed algorithm does not conserve charge leaving us with an open problem.
We describe details of a general Mie-Gruneisen equation of state and its numerical implementation. The equation of state contains a polynomial Hugoniot reference curve, an isentropic expansion and a tension cutoff.
We present a verification and validation analysis of a coordinate-transformation-based numerical solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and Simkin, yields an equation set perfectly suited for linear finite elements and for problems with large jumps in material conductivity near the axis. The verification analysis examines transient magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an approximate analytic solution using perturbation theory. This approach for generating a reference solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact solution is then used to demonstrate second-order convergence under spatial refinement and tem- poral refinement. For this new implementation, a significant improvement relative to previously available formulations is observed. Benefits in accuracy for computed current density and Joule heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests. The new implementation matches the accuracy of the existing formulation, with both formulations capturing the experimental burst time and action to within approximately 2%.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.
Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.
We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.
We examine several conducting spheres moving through a magnetic field gradient. An analytical approximation is derived and an experiment is conducted to verify the analytical solution. The experiment is simulated as well to produce a numerical result. Both the low and high magnetic Reynolds number regimes are studied. Deformation of the sphere is noted in the high Reynolds number case. It is suggested that this deformation effect could be useful for designing or enhancing present protection systems against space debris.
We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.
In this report we summarize research into new parallel algebraic multigrid (AMG) methods. We first provide a introduction to parallel AMG. We then discuss our research in parallel AMG algorithms for very large scale platforms. We detail significant improvements in the AMG setup phase to a matrix-matrix multiplication kernel. We present a smoothed aggregation AMG algorithm with fewer communication synchronization points, and discuss its links to domain decomposition methods. Finally, we discuss a multigrid smoothing technique that utilizes two message passing layers for use on multicore processors.
The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.
Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.
Two classical verification problems from shock hydrodynamics are adapted for verification in the context of ideal magnetohydrodynamics (MHD) by introducing strong transverse magnetic fields, and simulated using the finite element Lagrange-remap MHD code ALEGRA for purposes of rigorous code verification. The concern in these verification tests is that inconsistencies related to energy advection are inherent in Lagrange-remap formulations for MHD, such that conservation of the kinetic and magnetic components of the energy may not be maintained. Hence, total energy conservation may also not be maintained. MHD shock propagation may therefore not be treated consistently in Lagrange-remap schemes, as errors in energy conservation are known to result in unphysical shock wave speeds and post-shock states. That kinetic energy is not conserved in Lagrange-remap schemes is well known, and the correction of DeBar has been shown to eliminate the resulting errors. Here, the consequences of the failure to conserve magnetic energy are revealed using order verification in the two magnetized shock-hydrodynamics problems. Further, a magnetic analog to the DeBar correction is proposed and its accuracy evaluated using this verification testbed. Results indicate that only when the total energy is conserved, by implementing both the kinetic and magnetic components of the DeBar correction, can simulations in Lagrange-remap formulation capture MHD shock propagation accurately. Additional insight is provided by the verification results, regarding the implementation of the DeBar correction and the advection scheme.
Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While still over-parametrized, this choice of model space contains far fewer parameters than before, thus easing the computational burden, in some cases, of the optimization problem. And most importantly, the associated finite element discretization is aligned with the abrupt changes in material properties associated with lithologic boundaries as well as the interface between buried cultural artifacts and the surrounding Earth. In section 4, algorithms and tools are described that associate a smooth interface surface to a given triangulation. In particular, the tools support surface refinement and coarsening. Section 5 describes some preliminary results on the application of interface identification methods to some model problems in geophysical inversion. Due to time constraints, the results described here use the GNU Triangulated Surface Library for the manipulation of surface meshes and the TetGen software library for the generation of tetrahedral meshes.
Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.
The success of Lagrangian contact modeling leads one to believe that important aspects of this capability may be used for multi-material modeling when only a portion of the simulation can be represented in a Lagrangian frame. We review current experience with two dual mesh technologies where one of these meshes is a Lagrangian mesh and the other is an Arbitrary Lagrangian/Eulerian (ALE) mesh. These methods are cast in the framework of an operator-split ALE algorithm where a Lagrangian step is followed by a remesh/remap step. An interface-coupled methodology is considered first. This technique is applicable to problems involving contact between materials of dissimilar compliance. The technique models the more compliant (soft) material as ALE while the less compliant (hard) material and associated interface are modeled in a Lagrangian fashion. Loads are transferred between the hard and soft materials via explicit transient dynamics contact algorithms. The use of these contact algorithms remove the requirement of node-tonode matching at the soft-hard interface. In the context of the operator-split ALE algorithm, a single Lagrangian step is performed using a mesh to mesh contact algorithm. At the end of the Lagrangian step the meshes will be slightly offset at the interface but non-interpenetrating. The ALE mesh nodes at the interface are then remeshed to their initial location relative to the Lagrangian body faces and the ALE mesh is smoothed, translated and rotated to follow Lagrangian body. Robust remeshing in the ALE region is required for success of this algorithm, and we describe current work in this area. The second method is an overlapping grid methodology that requires mapping of information between a Lagrangian mesh and an ALE mesh. The Lagrangian mesh describes a relatively hard body that interacts with softer material contained in the ALE mesh. A predicted solution for the velocity field is performed independently on both meshes. Element-centered velocity and momentum are transferred between the meshes using the volume transfer capability implemented in contact algorithms. Data from the ALE mesh is mapped to a phantom mesh that surrounds the Lagrangian mesh, providing for the reaction to the predicted motion of the Lagrangian material. Data from the Lagrangian mesh is mapped directly to the ALE mesh. A momentum balance is performed on both meshes to adjust the velocity field to account for the interaction of the material from the other mesh. Subsequent, remeshing and remapping of the ALE mesh is performed to allow large deformation of the softer material. We overview current progress using this approach and discuss avenues for future research and development.
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamics, thermal conduction, and radiation transport effects, and two material temperature physics.
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamic, thermal conduction, and radiation emission effects.
ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite element code used for modeling solid dynamics problems involving large distortion and shock propagation. This document describes the basic user input language and instructions for using the software.
The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed.
Algorithms for higher order accuracy modeling of kinematic behavior within the ALEGRA framework are presented. These techniques improve the behavior of the code when kinematic errors are found, ensure orthonormality of the rotation tensor at each time step, and increase the accuracy of the Lagrangian stretch and rotation tensor update algorithm. The implementation of these improvements in ALEGRA is described. A short discussion of issues related to improving the accuracy of the stress update procedures is also included.
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling magnetohydrodynamic, thermal conduction, and radiation emission effects.
High-resolution finite volume methods for solving systems of conservation laws have been widely embraced in research areas ranging from astrophysics to geophysics and aero-thermodynamics. These methods are typically at least second-order accurate in space and time, deliver non-oscillatory solutions in the presence of near discontinuities, e.g., shocks, and introduce minimal dispersive and diffusive effects. High-resolution methods promise to provide greatly enhanced solution methods for Sandia's mainstream shock hydrodynamics and compressible flow applications, and they admit the possibility of a generalized framework for treating multi-physics problems such as the coupled hydrodynamics, electro-magnetics and radiative transport found in Z pinch physics. In this work, we describe initial efforts to develop a generalized 'black-box' conservation law framework based on modern high-resolution methods and implemented in an object-oriented software framework. The framework is based on the solution of systems of general non-linear hyperbolic conservation laws using Godunov-type central schemes. In our initial efforts, we have focused on central or central-upwind schemes that can be implemented with only a knowledge of the physical flux function and the minimal/maximal eigenvalues of the Jacobian of the flux functions, i.e., they do not rely on extensive Riemann decompositions. Initial experimentation with high-resolution central schemes suggests that contact discontinuities with the concomitant linearly degenerate eigenvalues of the flux Jacobian do not pose algorithmic difficulties. However, central schemes can produce significant smearing of contact discontinuities and excessive dissipation for rotational flows. Comparisons between 'black-box' central schemes and the piecewise parabolic method (PPM), which relies heavily on a Riemann decomposition, shows that roughly equivalent accuracy can be achieved for the same computational cost with both methods. However, PPM clearly outperforms the central schemes in terms of accuracy at a given grid resolution and the cost of additional complexity in the numerical flux functions. Overall we have observed that the finite volume schemes, implemented within a well-designed framework, are extremely efficient with (potentially) very low memory storage. Finally, we have found by computational experiment that second and third-order strong-stability preserving (SSP) time integration methods with the number of stages greater than the order provide a useful enhanced stability region. However, we observe that non-SSP and non-optimal SSP schemes with SSP factors less than one can still be very useful if used with time-steps below the standard CFL limit. The 'well-designed' integration schemes that we have examined appear to perform well in all instances where the time step is maintained below the standard physical CFL limit.
An understanding of the dynamics of z-pinch wire array explosion and collapse is of critical interest to the development and future of pulsed power inertial confinement fusion experiments. Experimental results clearly show the extreme three-dimensional nature of the wire explosion and collapse process. The physics of this process can be approximated by the resistive magnetohydrodynamic (MHD) equations augmented by thermal and radiative transport modeling. Z-pinch MHD physics is dominated by material regions whose conductivity properties vary drastically as material passes from solid through melt into plasma regimes. At the same time void regions between the wires are modeled as regions of very low conductivity. This challenging physical situation requires a sophisticated three-dimensional modeling approach matched by sufficient computational resources to make progress in predictive modeling and improved physical understanding.
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation. This document describes the user input language for the code.
Computational techniques for the evaluation of steady plane subsonic flows represented by Chaplygin series in the hodograph plane are presented. These techniques are utilized to examine the properties of the free surface wall jet solution. This solution is a prototype for the shaped charge jet, a problem which is particularly difficult to compute properly using general purpose finite element or finite difference continuum mechanics codes. The shaped charge jet is a classic validation problem for models involving high explosives and material strength. Therefore, the problem studied in this report represents a useful verification problem associated with shaped charge jet modeling.