Remote Sensing for Bio-Aerosol Detection
Abstract not provided.
Abstract not provided.
A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.