SECURE: Science and Engineering of Cyber security by Uncertainty quantification and Rigorous Experimentation
Abstract not provided.
Abstract not provided.
Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.
Abstract not provided.
This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.
Abstract not provided.
Abstract not provided.
WSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining
Finding dense regions of graphs is fundamental in graph mining. We focus on the computation of dense hierarchies and regions with graph nuclei - -a generalization of k-cores and trusses. Static computation of nuclei, namely through variants of 'peeling', are easy to understand and implement. However, many practically important graphs undergo continuous change. Dynamic algorithms, maintaining nucleus computations on dynamic graph streams, are nuanced and require significant effort to port between nuclei, e.g., from k-cores to trusses. We propose a unifying framework to maintain nuclei in dynamic graph streams. First, we show no dynamic algorithm can asymptotically beat re-computation, highlighting the need to experimentally understand variability. Next, we prove equivalence between k-cores on a special hypergraph and nuclei. Our algorithm splits the problem into maintaining the special hypergraph and maintaining k-cores on it. We implement our algorithm and experimentally demonstrate improvements up to 108 x over re-computation. We show algorithmic improvements on k-cores apply to trusses and outperform truss-specific implementations.
Abstract not provided.
Annual ACM Symposium on Parallelism in Algorithms and Architectures
We present a theoretical framework for designing and assessing the performance of algorithms executing in networks consisting of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze neuromorphic graph algorithms, focusing on shortest path problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation, and we develop data-movement lower bounds for conventional algorithms. A fair and rigorous comparison with conventional algorithms and architectures is challenging but paramount. We prove a polynomial-factor advantage even when we assume an SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a provable asymptotic computational advantage for neuromorphic computing.
2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021
Abstract not provided.
Protecting against multi-step attacks of uncertain duration and timing forces defenders into an indefinite, always ongoing, resource-intensive response. To effectively allocate resources, a defender must be able to analyze multi-step attacks under assumption of constantly allocating resources against an uncertain stream of potentially undetected attacks. To achieve this goal, we present a novel methodology that applies a game-theoretic approach to the attack, attacker, and defender data derived from MITRE´s ATT&CK® Framework. Time to complete attack steps is drawn from a probability distribution determined by attacker and defender strategies and capabilities. This constraints attack success parameters and enables comparing different defender resource allocation strategies. By approximating attacker-defender games as Markov processes, we represent the attacker-defender interaction, estimate the attack success parameters, determine the effects of attacker and defender strategies, and maximize opportunities for defender strategy improvements against an uncertain stream of attacks. This novel representation and analysis of multi-step attacks enables defender policy optimization and resource allocation, which we illustrate using the data from MITRE´ s APT3 ATT&CK® Framework.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Centrality rankings such as degree, closeness, betweenness, Katz, PageRank, etc. are commonly used to identify critical nodes in a graph. These methods are based on two assumptions that restrict their wider applicability. First, they assume the exact topology of the network is available. Secondly, they do not take into account the activity over the network and only rely on its topology. However, in many applications, the network is autonomous, vast, and distributed, and it is hard to collect the exact topology. At the same time, the underlying pairwise activity between node pairs is not uniform and node criticality strongly depends on the activity on the underlying network. In this paper, we propose active betweenness cardinality, as a new measure, where the node criticalities are based on not the static structure, but the activity of the network. We show how this metric can be computed efficiently by using only local information for a given node and how we can find the most critical nodes starting from only a few nodes. We also show how this metric can be used to monitor a network and identify failed nodes. We present experimental results to show effectiveness by demonstrating how the failed nodes can be identified by measuring active betweenness cardinality of a few nodes in the system.
Abstract not provided.
In the Multiple Instance Learning scenario, the training data consists of instances grouped into bags, and each bag is labelled with whether it is positive, i.e. contains at least one positive instance. First, Active Learning, in which additional labels can be iteratively requested, has the potential to allow more accurate classifiers to be learned with less labels. Active Learning has been applied to the Multiple Instance Learning under two settings: when bag labels of unlabelled bags can be requested, and when instance labels within bags known to be positive can be requested. Second, Bayesian Active learning methods have the potential to learn accurate classifiers with few labels, because they explicitly track the classifier uncertainty and can thus address its knowledge gaps. Yet, there does not exist any Bayesian Active Learning method for the Multiple Instance Learning Scenario. In this work, we develop the first such method. We develop a Bayesian classifier for the Multiple Instance Learning scenario, show how it can be efficiently used for Bayesian Active Learning, and perform experiments assessing its performance. While its performance exceeds that when no Active Learning is used, it is sometimes better, sometimes worse than the naive baseline of uncertainty sampling, depending on the situation. This suggests future work: building more customizable Bayesian Active Learning methods for the Multiple Instance Scenario, customizable to whether bag or instance label accuracy is targeted, and the labeling budget.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020
In many online social networking platforms, the participation of an individual is motivated by the participation of others. If an individual chooses to leave a platform, this may produce a cascade in which that person’s friends then choose to leave, causing their friends to leave, and so on. In some cases, it may be possible to incentivize key individuals to stay active within the network, thus preventing such a cascade. This problem is modeled using the anchored k-core of a network, which, for a network G and set of anchor nodes A, is the maximal subgraph of G in which every node has a total of at least k neighbors between the subgraph and anchors. In this work, we propose Residual Core Maximization (RCM), a novel algorithm for finding b anchor nodes so that the size of the anchored k-core is maximized. We perform a comprehensive experimental evaluation on numerous real-world networks and compare RCM to various baselines. We observe that RCM is more effective and efficient than the state-of-the-art methods: on average, RCM produces anchored k-cores that are 1.65 times larger than those produced by the baseline algorithm, and is approximately 500 times faster on average.
Proceedings - 2019 Resilience Week, RWS 2019
Securing cyber systems is of paramount importance, but rigorous, evidence-based techniques to support decision makers for high-consequence decisions have been missing. The need for bringing rigor into cybersecurity is well-recognized, but little progress has been made over the last decades. We introduce a new project, SECURE, that aims to bring more rigor into cyber experimentation. The core idea is to follow the footsteps of computational science and engineering and expand similar capabilities to support rigorous cyber experimentation. In this paper, we review the cyber experimentation process, present the research areas that underlie our effort, discuss the underlying research challenges, and report on our progress to date. This paper is based on work in progress, and we expect to have more complete results for the conference.
Abstract not provided.
Abstract not provided.
BMC Bioinformatics
Background: The efficient biological production of industrially and economically important compounds is a challenging problem. Brute-force determination of the optimal pathways to efficient production of a target chemical in a chassis organism is computationally intractable. Many current methods provide a single solution to this problem, but fail to provide all optimal pathways, optional sub-optimal solutions or hybrid biological/non-biological solutions. Results: Here we present RetSynth, software with a novel algorithm for determining all optimal biological pathways given a starting biological chassis and target chemical. By dynamically selecting constraints, the number of potential pathways scales by the number of fully independent pathways and not by the number of overall reactions or size of the metabolic network. This feature allows all optimal pathways to be determined for a large number of chemicals and for a large corpus of potential chassis organisms. Additionally, this software contains other features including the ability to collect data from metabolic repositories, perform flux balance analysis, and to view optimal pathways identified by our algorithm using a built-in visualization module. This software also identifies sub-optimal pathways and allows incorporation of non-biological chemical reactions, which may be performed after metabolic production of precursor molecules. Conclusions: The novel algorithm designed for RetSynth streamlines an arduous and complex process in metabolic engineering. Our stand-alone software allows the identification of candidate optimal and additional sub-optimal pathways, and provides the user with necessary ranking criteria such as target yield to decide which route to select for target production. Furthermore, the ability to incorporate non-biological reactions into the final steps allows determination of pathways to production for targets that cannot be solely produced biologically. With this comprehensive suite of features RetSynth exceeds any open-source software or webservice currently available for identifying optimal pathways for target production.
Abstract not provided.
ACM International Conference Proceeding Series
With the advent of large-scale neuromorphic platforms, we seek to better understand the applications of neuromorphic computing to more general-purpose computing domains. Graph analysis problems have grown increasingly relevant in the wake of readily available massive data. We demonstrate that a broad class of combinatorial and graph problems known as dynamic programs enjoy simple and efficient neuromorphic implementations, by developing a general technique to convert dynamic programs to spiking neuromorphic algorithms. Dynamic programs have been studied for over 50 years and have dozens of applications across many fields.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Community detection is often used to understand the nature of a network. However, there may exist an adversarial member of the network who wishes to evade that understanding. We analyze one such specific situation, quantifying the efficacy of certain attacks against a particular analytic use of community detection and providing a preliminary assessment of a possible defense.
Computational Optimization and Applications
Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.
Abstract not provided.
Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Our nation's dependence on information networks makes it vital to anticipate disruptions or find weaknesses in these networks. But networks like the Internet are vast, distributed, and there is no mechanism to completely collect their structure. We are restricted to specific data collection schemes (like traceroute samples from router interfaces) that examine tiny portions of such a network. It has been empirically documented and theoretically proven that these measurements have significant biases, and direct inferences from them will be wrong. But these data collection mechanisms have limited flexibility and cannot be easily modified. Moreover, in many applications there are limits on how much data can be collected. How do we make accurate inferences of network properties with biased and limited measurements? The general problem this report deals with is how to work with incompletely observed networks. We will present several different approaches to this problem. First we will present an approach to estimate the degree distribution of a graph by sampling only a small portion of the vertices. This algorithm provides provably accurate results with sublinear samples. An alternative approach would be to try to enhance the information in the by selective collecting new information by probing for neighbors of a vertex or presence of individual edges. A different setting for working with incomplete arises when we have full access to local information, but do not have any global version of the graph. Can we still identify critical nodes in such a graph? We present an approach to identify such nodes efficiently. Finally, how can we put these ideas together to identify the structure of a network? We present an approach that can complement the existing approaches for network mapping. We start with an estimate of network structure based on existing network mapping methods. Then we find a critical router in the network, use the traffic through this network to selectively collect new data to enhance our prediction.
Abstract not provided.
Journal of Complex Networks
Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to engineering to biology. This article is focused on generative models of large-scale bipartite graphs, also known as two-way graphs or two-mode networks. We propose two generative models that can be easily tuned to reproduce the characteristics of real-world networks, not just qualitatively but quantitatively. The characteristics we consider are the degree distributions and the metamorphosis coefficient. The metamorphosis coefficient, a bipartite analogue of the clustering coefficient, is the proportion of length-three paths that participate in length-four cycles. Having a high metamorphosis coefficient is a necessary condition for close-knit community structure. We define edge, node and degreewise metamorphosis coefficients, enabling a more detailed understanding of the bipartite connectivity that is not explained by degree distribution alone. Our first model, bipartite Chung-Lu, is able to reproduce real-world degree distributions, and our second model, bipartite block two-level Erdös-Rényi, reproduces both the degree distributions as well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on several real-world data sets.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Molecular, Biological and Multi-Scale Communications
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Complex Networks
The study of triangles in graphs is a standard tool in network analysis, leading to measures such as the transitivity, i.e., the fraction of paths of length two that participate in triangles. Real-world networks are often directed, and it can be difficult to meaningfully understand this network structure. We propose a collection of directed closure values for measuring triangles in directed graphs in a way that is analogous to transitivity in an undirected graph. Our study of these values reveals much information about directed triadic closure. For instance, we immediately see that reciprocal edges have a high propensity to participate in triangles. We also observe striking similarities between the triadic closure patterns of different web and social networks. We perform mathematical and empirical analysis showing that directed configuration models that preserve reciprocity cannot capture the triadic closure patterns of real networks.
26th International World Wide Web Conference, WWW 2017
Counting the frequency of small subgraphs is a fundamental technique in network analysis across various domains, most notably in bioinformatics and social networks. The special case of triangle counting has received much attention. Getting results for 4-vertex or 5-vertex patterns is highly challenging, and there are few practical results known that can scale to massive sizes. We introduce an algorithmic framework that can be adopted to count any small pattern in a graph and apply this framework to compute exact counts for all 5-vertex subgraphs. Our framework is built on cutting a pattern into smaller ones, and using counts of smaller patterns to get larger counts. Furthermore, we exploit degree orientations of the graph to reduce runtimes even further. These methods avoid the combinatorial explosion that typical subgraph counting algorithms face. We prove that it suffices to enumerate only four specific subgraphs (three of them have less than 5 vertices) to exactly count all 5-vertex patterns. We perform extensive empirical experiments on a variety of real-world graphs. We are able to compute counts of graphs with tens of millions of edges in minutes on a commodity machine. To the best of our knowledge, this is the first practical algorithm for 5-vertex pattern counting that runs at this scale. A stepping stone to our main algorithm is a fast method for counting all 4-vertex patterns. This algorithm is typically ten times faster than the state of the art 4-vertex counters.
Abstract not provided.
IEEE International Symposium on Information Theory - Proceedings
Given a network of agents interacting over time, which few interactions best characterize the dynamics of the whole network? We propose an algorithm that finds the optimal sparse approximation of a network. The user controls the level of sparsity by specifying the total number of edges. The networks are represented using directed information graphs, a graphical model that depicts causal influences between agents in a network. Goodness of approximation is measured with Kullback-Leibler divergence. The algorithm finds the best approximation with no assumptions on the topology or the class of the joint distribution.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record - Asilomar Conference on Signals, Systems and Computers
Graphs in the real-world are often temporal and can be represented as a "stream" of edges. Estimating the number of triangles in a graph observed as a stream of edges is a fundamental problem in data mining. Our goal is to design a single pass space-efficient streaming algorithm for estimating triangle counts. While there are numerous algorithms for this problem, they all (implicitly or explicitly) assume that the stream does not contain duplicate edges. However, real graph streams are rife with duplicate edges. The work around is typically an extra unaccounted pass (storing all the edges!) just to "clean up" the data. Furthermore, previous work tends to aggregate all edges to construct a graph, discarding the temporal information. It will be much more informative to investigate temporal windows, especially multiple time windows simultaneously. Can we estimate triangle counts for multiple time windows in a single pass even when the stream contains repeated edges? In this work, we give the first algorithm for estimating the triangle count of a multigraph stream of edges over arbitrary time windows. We build on existing "wedge sampling" work for triangle counting. Duplicate edges create significant biasing issues for small space streaming algorithms, which we provably resolve through a subtle debiasing mechanism. Moreover, our algorithm seamlessly handles multiple time windows. The final result is theoretically provable and has excellent performance in practice. Our algorithm discovers fascinating transitivity and triangle trends in real-world temporal graphs.
Abstract not provided.
Abstract not provided.
Proceedings - IEEE International Conference on Data Mining, ICDM
Given two sets of vectors, A = {a1→,... , am→} and B = {b1→,... , bn→}, our problem is to find the top-t dot products, i.e., the largest |ai→ · bj→| among all possible pairs. This is a fundamental mathematical problem that appears in numerous data applications involving similarity search, link prediction, and collaborative filtering. We propose a sampling-based approach that avoids direct computation of all mn dot products. We select diamonds (i.e., four-cycles) from the weighted tripartite representation of A and B. The probability of selecting a diamond corresponding to pair (i, j) is proportional to (ai→ · bj→)2, amplifying the focus on the largest-magnitude entries. Experimental results indicate that diamond sampling is orders of magnitude faster than direct computation and requires far fewer samples than any competing approach. We also apply diamond sampling to the special case of maximum inner product search, and get significantly better results than the state-of-theart hashing methods.
Abstract not provided.
Abstract not provided.
Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.
Abstract not provided.
Abstract not provided.
Abstract not provided.
WWW 2015 - Proceedings of the 24th International Conference on World Wide Web
Counting the frequency of small subgraphs is a fundamental technique in network analysis across various domains, most notably in bioinformatics and social networks. The special case of triangle counting has received much attention. Getting results for 4-vertex patterns is highly challenging, and there are few practical results known that can scale to massive sizes. Indeed, even a highly tuned enumeration code takes more than a day on a graph with millions of edges. Most previous work that runs for truly massive graphs employ clusters and massive parallelization. We provide a sampling algorithm that provably and accurately approximates the frequencies of all 4-vertex pattern subgraphs. Our algorithm is based on a novel technique of 3-path sampling and a special pruning scheme to decrease the variance in estimates. We provide theoretical proofs for the accuracy of our algorithm, and give formal bounds for the error and confidence of our estimates. We perform a detailed empirical study and show that our algorithm provides estimates within 1% relative error for all subpatterns (over a large class of test graphs), while being orders of magnitude faster than enumeration and other sampling based algorithms. Our algorithm takes less than a minute (on a single commodity machine) to process an Orkut social network with 300 million edges.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2014 North American Power Symposium, NAPS 2014
Stochastic unit commitment models typically handle uncertainties in forecast demand by considering a finite number of realizations from a stochastic process model for loads. Accurate evaluations of expectations or higher moments for the quantities of interest require a prohibitively large number of model evaluations. In this paper we propose an alternative approach based on using surrogate models valid over the range of the forecast uncertainty. We consider surrogate models based on Polynomial Chaos expansions, constructed using sparse quadrature methods. Considering expected generation cost, we demonstrate that the approach can lead to several orders of magnitude reduction in computational cost relative to using Monte Carlo sampling on the original model, for a given target error threshold.
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Complex Networks
Abstract not provided.
Abstract not provided.
This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.
Abstract not provided.
Statistical Analysis and Data Mining
Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorithms to compute them can be extremely expensive, even for moderately sized graphs with only millions of edges. Previous work has considered node and edge sampling; in contrast, we consider wedge sampling, which provides faster and more accurate approximations than competing techniques. Additionally, wedge sampling enables estimating local clustering coefficients, degree-wise clustering coefficients, uniform triangle sampling, and directed triangle counts. Our methods come with provable and practical probabilistic error estimates for all computations. We provide extensive results that show our methods are both more accurate and faster than state-of-the-art alternatives. © 2014 Wiley Periodicals, Inc.
IEEE Transactions on Power Systems
We consider the problem of designing (or augmenting) an electric power system at a minimum cost such that it satisfies the N-k-survivability criterion. This survivability criterion is a generalization of the well-known N-k criterion, and it requires that at least 1-j fraction of the steady-state demand be met after failures of j components, for j=0,1,,k. The network design problem adds another level of complexity to the notoriously hard contingency analysis problem, since the contingency analysis is only one of the requirements for the design optimization problem. We present a mixed-integer programming formulation of this problem that takes into account both transmission and generation expansion. We propose an algorithm that can avoid combinatorial explosion in the number of contingencies, by seeking vulnerabilities in intermediary solutions and constraining the design space accordingly. Our approach is built on our ability to identify such system vulnerabilities quickly. Our empirical studies on modified instances of the IEEE 30-bus and IEEE 57-bus systems show the effectiveness of our methods. We were able to solve the transmission and generation expansion problems for k=4 in approximately 30 min, while other approaches failed to provide a solution at the end of 2 h. © 2014 IEEE.
Abstract not provided.
Abstract not provided.
ACM Transactions on Knowledge Discovery form Data
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in arXiv.
Abstract not provided.
Proposed for publication in arXiv.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdos-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdos-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks. © 2012 American Physical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics, and so allowing graphs with multivariate edges significantly increases modeling power. In this context the clustering problem becomes more challenging. Each edge/metric provides only partial information about the data; recovering full information requires aggregation of all the similarity metrics. We generalize the concept of clustering in single-edge graphs to multi-edged graphs and discuss how this generates a space of clusterings. We describe a meta-clustering structure on this space and propose methods to compactly represent the meta-clustering structure. Experimental results on real and synthetic data are presented. © 2011 Springer-Verlag.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM Journal on Experimental Algorithmics
Abstract not provided.
Abstract not provided.
Abstract not provided.
InformationProcessing Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
2011 Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, ALENEX 2011
One of the most influential results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, because many of these real-world networks have very different joint degree distributions, i.e. the probability that a randomly selected edge will be between nodes of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been previously noted that social networks tend to be assortative, while biological and technological networks tend to be disassortative. We suggest that the joint degree distribution of graphs is an interesting avenue of study for further research into network structure. We provide a simple greedy algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov Chain method for sampling them. We also show that the state space of simple graphs with a fixed degree distribution is connected via endpoint switches. We empirically evaluate the mixing time of this Markov Chain by using experiments based on the autocorrelation of each edge. Copyright © 2011 by SIAM.
Given a graph where each vertex is assigned a generation or consumption volume, we try to bisect the graph so that each part has a significant generation/consumption mismatch, and the cutsize of the bisection is small. Our motivation comes from the vulnerability analysis of distribution systems such as the electric power system. We show that the constrained version of the problem, where we place either the cutsize or the mismatch significance as a constraint and optimize the other, is NP-complete, and provide an integer programming formulation. We also propose an alternative relaxed formulation, which can trade-off between the two objectives and show that the alternative formulation of the problem can be solved in polynomial time by a maximum flow solver. Our experiments with benchmark electric power systems validate the effectiveness of our methods.
Abstract not provided.
One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, because many of these real-world networks have very different joint degree distributions, i.e. the probability that a randomly selected edge will be between nodes of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been previously noted that social networks tend to be assortative, while biological and technological networks tend to be disassortative. We suggest understanding the relationship between network structure and the joint degree distribution of graphs is an interesting avenue of further research. An important tool for such studies are algorithms that can generate random instances of graphs with the same joint degree distribution. This is the main topic of this paper and we study the problem from both a theoretical and practical perspective. We provide an algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov Chain method for sampling them. We also show that the state space of simple graphs with a fixed degree distribution is connected via end point switches. We empirically evaluate the mixing time of this Markov Chain by using experiments based on the autocorrelation of each edge. These experiments show that our Markov Chain mixes quickly on real graphs, allowing for utilization of our techniques in practice.
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics. For instance similarity between two papers can be based on common authors, where they are published, keyword similarity, citations, etc. As such, graphs with multiple edges is a more accurate model to describe similarities between objects. Each edge/metric provides only partial information about the data; recovering full information requires aggregation of all the similarity metrics. Clustering becomes much more challenging in this context, since in addition to the difficulties of the traditional clustering problem, we have to deal with a space of clusterings. We generalize the concept of clustering in single-edge graphs to multi-edged graphs and investigate problems such as: Can we find a clustering that remains good, even if we change the relative weights of metrics? How can we describe the space of clusterings efficiently? Can we find unexpected clusterings (a good clustering that is distant from all given clusterings)? If given the groundtruth clustering, can we recover how the weights for edge types were aggregated?
SIAM Journal on Scientific Computing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Goal - design methods to characterize and identify a low dimensional representation of graphs. Impact - enabling predictive simulation; monitoring dynamics on graphs; and sampling and recovering network structure from limited observations. Areas to explore are: (1) Enabling technologies - develop novel algorithms and tailor existing ones for complex networks; (2) Modeling and generation - Identify the right parameters for graph representation and develop algorithms to compute these parameters and generate graphs from these parameters; and (3) Comparison - Given two graphs how do we tell they are similar? Some conclusions are: (1) A bad metric can make anything look good; (2) A metric that is based an edge-by edge prediction will suffer from the skewed distribution of present and absent edges; (3) The dominant signal is the sparsity, edges only add a noise on top of the signal, the real signal, structure of the graph is often lost behind the dominant signal; and (4) Proposed alternative: comparison based on carefully chosen set of features, it is more efficient, sensitive to selection of features, finding independent set of features is an important area, and keep an eye on us for some important results.
The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun Niagara and Opteron multi-core chips.