Publications

23 Results
Skip to search filters

Revisiting Multi-Material Composite Structures with Homogenized Composite Properties

Hanson, Alexander A.

Composite structures inherently develop residual stresses during their curing process. Driven predominately by mismatched thermal strains between differing materials or ply orientations, but also affected by curing process phenomena like polymer shrinkage, these residual stresses can lead to failure within composite structures. There are several methods varying in complexity that can be used to model the development of residual stresses, all of which are capable of capturing sufficient detail to understand the residual stress state at the ply level. However, explicitly modeling all plies of a layup in a composite structure can be prohibitively expensive based on the number of plies, structure size, and required element size. The computational cost can be reduced through the homogenization of the composite layup without losing much fidelity of the overall response of the structure. The homogenization process reduces the many plies of a laminate to a single lamina that reduces complexity and increases the mesh size where a single element can span multiple plies. This report focuses on verification and validation efforts for a homogenization process using a suite of finite element simulations rather than an analytic solution derived from classical laminate theory. Initial verification using representative element volumes indicated there was minimal error in the homogenization process; however, this compounded to a small, but acceptable error in strip and split ring experimental composite structures. The error does under predict the residual stress state in the strip and split ring and should be accounted for when simulating composite structures with homogenized properties.

More Details

Survey of DAKOTA's V&V Capabilities in the Simulation of Residual Stresses in a Simple Composite Structure

Nelson, Stacy M.; Hanson, Alexander A.

Process-induced residual stresses occur in composite structures composed of dissimilar materials. As these residual stresses can result in fracture, their consideration when designing composite parts is necessary. However, the experimental determination of residual stresses in prototype parts can be time and cost prohibitive. Alternatively, it is possible for computational tools to predict potential residual stresses. Therefore, a process modeling methodology was developed and implemented into Sandia National Laboratories' SIERRA/SolidMechanics code. This method can be used to predict the process-induced stresses in any composite structure, regardless of material composition or geometric complexity. However, to develop confidence in these predictions, they must be rigorously validated. Specifically, sensitivity studies should be completed to define which model parameters are critical to the residual stress predictions. Then, the uncertainty associated with those critical parameters should be quantified and processed through the model to develop stress-state predictions encompassing the most important sources of physical variability. Numerous sensitivity analysis and uncertainty quantification methods exist, each offering specific strengths and weaknesses. Therefore, the objective of this study is to compare the performance of several accepted sensitivity analysis and uncertainty quantification methods during the manufacturing process simulation of a composite structure. The examined methods include simple sampling techniques as well as more sophisticated surrogate approaches. The computational costs are assessed for each of the examined methods, and the results of the study indicate that the surrogate approaches are the most computationally efficient validation methods and are ideal for future residual stress investigations.

More Details

Verification and validation of residual stresses in composite structures

Composite Structures

Nelson, Stacy M.; Hanson, Alexander A.; Briggs, Timothy B.; Werner, Brian T.

Process-induced residual stresses occur in composite structures composed of dissimilar materials. As these residual stresses could result in fracture, their consideration when designing composite parts is necessary. However, the experimental determination of residual stresses in prototype parts can be time and cost prohibitive. Alternatively, it is possible for computational tools to predict potential residual stresses. Therefore, the objectives of the presented work are to demonstrate an efficient method for simulating residual stresses in composite parts, as well as the potential value of statistical methods during analyses for which material properties are unknown. Specifically, a simplified residual stress modeling approach is implemented within Sandia National Laboratories’ SIERRA/SolidMechanics code. Concurrent with the model development, bi-material composite structures are designed and manufactured to exhibit significant residual stresses. Then, the presented modeling approach is rigorously verified and validated through simulations of the bi-material composite structures’ manufacturing processes, including a mesh convergence study, sensitivity analysis, and uncertainty quantification. The simulations’ final results show adequate agreement with the experimental measurements, indicating the validity of a simple modeling approach, as well as a necessity for the inclusion of material parameter uncertainty in the final residual stress predictions.

More Details
23 Results
23 Results