Publications

3 Results
Skip to search filters

An analysis of uranium dispersal and health effects using a Gulf War case study

Marshall, Albert C.

The study described in this report used mathematical modeling to estimate health risks from exposure to depleted uranium (DU) during the 1991 Gulf War for both U.S. troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. Only a few veterans in vehicles accidentally struck by U.S. DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk (i.e., the possibility of temporary kidney damage from the chemical toxicity of uranium and about a 1% chance of fatal lung cancer). The health risk to all downwind civilians is predicted to be extremely small. Recommendations for monitoring are made for certain exposed groups. Although the study found fairly large calculational uncertainties, the models developed and used are generally valid. The analysis was also used to assess potential uranium health hazards for workers in the weapons complex. No illnesses are projected for uranium workers following standard guidelines; nonetheless, some research suggests that more conservative guidelines should be considered.

More Details

Low work function material development for the microminiature thermionic converter

King, Donald B.; King, Donald B.; Zavadil, Kevin R.; Jennison, Dwight R.; Battaile, Corbett C.; Marshall, Albert C.

Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC.

More Details

An Assessment of Reactor Types for Thermochemical Hydrogen Production

Marshall, Albert C.

Nuclear energy has been proposed as a heat source for producing hydrogen from water using a sulfur-iodine thermochemical cycle. This document presents an assessment of the suitability of various reactor types for this application. The basic requirement for the reactor is the delivery of 900 C heat to a process interface heat exchanger. Ideally, the reactor heat source should not in itself present any significant design, safety, operational, or economic issues. This study found that Pressurized and Boiling Water Reactors, Organic-Cooled Reactors, and Gas-Core Reactors were unsuitable for the intended application. Although Alkali Metal-Cooled and Liquid-Core Reactors are possible candidates, they present significant development risks for the required conditions. Heavy Metal-Cooled Reactors and Molten Salt-Cooled Reactors have the potential to meet requirements, however, the cost and time required for their development may be appreciable. Gas-Cooled Reactors (GCRs) have been successfully operated in the required 900 C coolant temperature range, and do not present any obvious design, safety, operational, or economic issues. Altogether, the GCRs approach appears to be very well suited as a heat source for the intended application, and no major development work is identified. This study recommends using the Gas-Cooled Reactor as the baseline reactor concept for a sulfur-iodine cycle for hydrogen generation.

More Details
3 Results
3 Results