Publications

9 Results
Skip to search filters

Copper corrosion and its relationship to solar collectors:a compendium

Menicucci, David F.; Mahoney, Alan R.

Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

More Details

Development and evaluation of an in-situ beam measurement for spot welding lasers

Welding Journal (Miami, Fla)

Fuerschbach, Phillip W.; Norris, J.T.; Dykhuizen, Ronald C.; Mahoney, Alan R.

A straightforward and accurate method for measuring the laser beam diameter at focus is desired in order to develop fundamental understanding and for routine process control. These measurements are useful for laser materials processing by assuring laser performance consistency at the workpiece. By employing multiple-shot exposures on Kapton™ film, an unambiguous and precise measurement of the focused Nd:YAG laser beam diameter for spot welding lasers was obtained. A comparison of focused beam measurements produced with the Prometec laserscope and an ISO variable aperture method found that these two methods, which both measure the 86% energy contour, do closely agree. In contrast, Kapton film was found to measure the 99% beam energy contour and to diverge from measurements made with the other two methods. The divergence between Kapton and the other two methods was shown to be due to changes in the laser irradiance distribution that do not affect the location of the 99% energy contour. Since the 86% beam diameter was seen to not always be representative of the true beam diameter, the 99% Kapton film diameter can provide a more representative measurement of the focused laser for in-situ process control.

More Details
9 Results
9 Results