This document is aimed at providing guidance to the National Nuclear Security Administration’s (NNSA) Office of International Nuclear Security’s (INS) country and regional teams for implementing effective physical protection systems (PPSs) for nuclear power plants (NPPs) to prevent the radiological consequences of sabotage. This recommendation document includes input from the Physical Protection Functional Team (PPFT), the Response Functional Team (RFT), and the Sabotage Functional Team (SFT) under INS. Specifically, this document provides insights into increasing and sustaining physical protection capabilities at INS partner countries’ NPP sites. Nuclear power plants should consider that the intent of this document is to provide a historical context as well as technologies and methodologies that may be applied to improve physical protection capabilities. It also refers to relevant guidance from the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC).
This recommendation document will provide international partners insight on physical protection systems (PPSs) for small modular reactors (SMRs). SMRs create many unique challenges for physical protection that must be addressed in design and implementation. This document will attempt to highlight possible challenges of SMRs and identify potential physical protection recommendations to mitigate these challenges. These recommendations are based on hypothetical SMR facilities and PPSs and their effectiveness against hypothetical adversaries.
This report will summarize the group's work to provide recommendations to secure nuclear facilities before, during and after an extreme weather event. Extreme weather events can have drastic impacts to nuclear facilities as seen by the earthquake and subsequent tsunami at the Fukushima Daiichi Nuclear Power Plant in 2011. Recent hurricanes in the United States including Hurricane Harvey demonstrate the devastating effects these storms can have on infrastructure and the surrounding communities. The group is attempting to identify the gaps that potential small modular reactor (SMR) facilities will need to address in order to provide adequate site security before, during and after extreme weather events. This effort proceeded in three parts to provide insights and recommendations to secure Small Modular Reactor facilities for extreme weather events:(1) a literature review of academic articles as well as relevant documents including the existing regulatory framework and recommendations from the IAEA, NRC, and DOE, (2) subject matter expert interviews from a wide variety of security backgrounds, and (3) modeling and simulation on a hypothetical SMR facility. Special attention was paid to the interactions between stakeholders and nuclear facility design considerations, particularly the topics of safety and security. Engineering design issues from safety and security perspectives were discussed and included in simulation. Each step informed the proceeding, with the result including full tabletop scenarios of EWE impacts to security system effectiveness on the hypothetical model. This systems-level analysis provides results to inform recommendations to secure SMR facilities.
The design and construction of a nuclear power plant must include robust structures and a security boundary that is difficult to penetrate. For security considerations, the reactors would ideally be sited underground, beneath a massive solid block, which would be too thick to be penetrated by tools or explosives. Additionally, all communications and power transfer lines would also be located underground and would be fortified against any possible design basis threats. Limiting access with difficult-to-penetrate physical barriers is a key aspect for determining response and staffing requirements. Considerations considered in a graded approach to physical protection are described.
Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Limiting access with difficult-to-penetrate physical barriers is going to be key for staffing reduction. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Having the minimal possible number of access points and methods to completely block access from these points if a threat is detected will greatly help us justify staffing reduction.
Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Limiting access with difficult-to-penetrate physical barriers is going to be key for determining response and staffing requirements.