Publications

18 Results
Skip to search filters

Influence of temperature and resonance-stabilization on the ortho-effect in cymene oxidation

Proceedings of the Combustion Institute

Rotavera, Brandon R.; Scheer, Adam M.; Huang, Haifeng H.; Osborn, David L.; Taatjes, Craig A.

Cymenes are monoterpene derivatives composed of a benzene ring with iso-propyl and methyl substituents, and the proximity of the two alkyl groups enables relevant analysis into the ortho-effect of polysubstituted aromatics, in which low-temperature autoignition is more facile for ortho-substitution. The initial steps of ROO-related reactions from Cl-initiated oxidation of ortho-, meta- and para-cymene were studied at low pressure (8 Torr) over the temperature range 450-750 K using multiplexed photoionization mass spectrometry (MPIMS). Ratios of cyclic ether formation (related to chain-propagation and OH formation) relative to HO2-loss (related to chain-termination) were measured to characterize the ortho-effect as a function of temperature. The main results are twofold: Cyclic ether measurements indicate significant chain-propagation below 700 K only in o-cymene oxidation; above 700 K, chain-propagation of the three cymene isomers converge.The competition between chain-propagation channels stemming from resonance- and non-resonance-stabilized initial cymene radicals changes significantly with temperature, with chain-propagation near 700 K arising predominantly from non-resonance-stabilized R radicals. Cyclic ether yields in m- and p-cymene oxidation are negligible below 650 K, indicating minimal chain-propagation. In contrast, o-cymene exhibits significant cyclic ether formation, attributed to the favorable 6- and 7-membered-ring transition states in the formation of hydroperoxyalkyl (QOOH) intermediates from peroxy radicals (ROO). The cyclic ether/HO2-loss ratio in o-cymene oxidation is defined as unity at 450 K and decreases to ∼0.10 at 700 K. The ratio converges to ∼0.10 at 700 K for the three cymene isomers, indicating an upper limit of temperature for the ortho-effect. Photoionization spectra of cyclic ether formation from o-cymene oxidation indicate a competition between both resonance- and non-resonance-stabilized initial radicals at the lower range of temperature. With increasing temperature, cyclic ether formation shifts from pathways involving resonance-stabilized initial radicals towards pathways solely from non-resonance-stabilized initial radicals because of back-dissociation of weakly bound ROO adducts.

More Details

Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

Journal of Physical Chemistry A

Rotavera, Brandon R.; Zador, Judit Z.; Welz, Oliver; Sheps, Leonid S.; Scheer, Adam M.; Savee, John D.; Akbar Ali, Mohamad; Lee, Taek S.; Simmons, Blake S.; Osborn, David L.; Violi, Angela; Taatjes, Craig A.

Product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). Interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH. (Chemical Equation Pesented).

More Details

Tailoring next-generation biofuels and their combustion in next-generation engines

Taatjes, Craig A.; Gladden, John M.; Wu, Weihua W.; O'Bryan, Gregory O.; Powell, Amy J.; Scheer, Adam M.; Turner, Kevin T.; Yu, Eizadora T.

Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

More Details

Facile rearrangement of 3-oxoalkyl radicals is evident in low-temperature gas-phase oxidation of ketones

Journal of the American Chemical Society

Scheer, Adam M.; Welz, Oliver W.; Sasaki, Darryl Y.; Osborn, David L.; Taatjes, Craig A.

The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550-650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that in a Dowd-Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol-1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation. © 2013 American Chemical Society.

More Details
18 Results
18 Results