Publications

26 Results
Skip to search filters

The emergence of small-scale self-affine surface roughness from deformation

Science Advances

Hinkle, Adam H.; Nöhring, Wolfram G.; Leute, Richard; Junge, Till; Pastewka, Lars

Most natural and man-made surfaces appear to be rough on many length scales. There is presently no unifying theory of the origin of roughness or the self-affine nature of surface topography. One likely contributor to the formation of roughness is deformation, which underlies many processes that shape surfaces such as machining, fracture, and wear. Using molecular dynamics, we simulate the biaxial compression of single-crystal Au, the high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, and amorphous Cu50Zr50 and show that even surfaces of homogeneous materials develop a self-affine structure. By characterizing subsurface deformation, we connect the self-affinity of the surface to the spatial correlation of deformation events occurring within the bulk and present scaling relations for the evolution of roughness with strain. These results open routes toward interpreting and engineering roughness profiles.

More Details

In situ tribochemical formation of self-lubricating diamond-like carbon films

Carbon

Argibay, Nicolas A.; Babuska, Tomas F.; Curry, John C.; Dugger, Michael T.; Lu, Ping L.; Adams, David P.; Nation, Brendan L.; Doyle, Barney L.; Pham, Minh P.; Pimentel, Adam S.; Mowry, Curtis D.; Hinkle, Adam H.; Chandross, M.

Diamond-like carbon (DLC) films were tribochemically formed from ambient hydrocarbons on the surface of a highly stable nanocrystalline Pt-Au alloy. A sliding contact between an alumina sphere and Pt-Au coated steel exhibited friction coefficients as low as μ = 0.01 after dry sliding in environments containing trace (ppb) organics. Ex situ analysis indicated that the change in friction coefficient was due to the formation of amorphous carbon films, and Raman spectroscopy and elastic recoil analysis showed that these films consist of sp2/sp3 amorphous carbon with as much as 20% hydrogen. Transmission electron microscopy indicated these films had thicknesses exceeding 100 nm, and were enhanced by the incorporation of worn Pt-Au nanoparticles. The result was highly wear-resistant, low-friction DLC/Pt-Au nanocomposites. Atomistic simulations of hydrocarbons under shear between rigid Pt slabs using a reactive force field showed stress-induced changes in bonding through chain scission, a likely route towards the formation of these coatings. This novel demonstration of in situ tribochemical formation of self-lubricating films has significant impact potential in a wide range of engineering applications.

More Details
26 Results
26 Results