Loop-mediated isothermal amplification (LAMP), coupled with reverse transcription (RT), has become a popular technique for detection of viral RNA due to several desirable characteristics for use in point-of-care or low-resource settings. The large number of primers in LAMP (six per target) leads to an increased likelihood of primer dimer interactions, and the inner primers in particular are prone to formation of stable hairpin structures due to their length (typically 40-45 bases). Although primer dimers and hairpin structures are known features to avoid in nucleic acid amplification techniques, there is little quantitative information in literature regarding the impact of these structures on LAMP or RT-LAMP assays. In this study, we examine the impact of primer dimers and hairpins on previously published primer sets for dengue virus and yellow fever virus. We demonstrate that minor changes to the primers to eliminate amplifiable primer dimers and hairpins improves the performance of the assays when monitored in real time with intercalating dyes, and when monitoring a fluorescent endpoint using the QUASR technique. We also discuss the thermodynamic implications of these minor changes on the overall stability of amplifiable secondary structures, and we present a single thermodynamic parameter that can be correlated to the probability of non-specific amplification associated with LAMP primers.
Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable "LAMP box" supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device's utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.
The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.
The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.
Transcription factor (TF) binding pattern in chromatin provide precise and comprehensive information about the cell state. However, current analysis methods such as chromatin immunoprecipitation (ChIP) does not readily facilitate in-vivo characterization required to study short lived chromatin complexes. Here we develop a microfluidic stop flow system which is capable of mixing bacterial cells with formaldehyde on a sub-second mixing residence time scale enabling us to probe the kinetics of TF bound chromatin intermediates.
Check valves are often essential components in microfluidic devices, enabling automated sample processing for diagnostics at the point of care. However, there is an unmet need for a check valve design that is compatible with rigid thermoplastic devices during all stages of development - from initial prototyping with a laser cutter to final production with injection molding. Here, we present simple designs for a passive, normally closed check valve that is manufactured from commonly available materials with a CO2 laser and readily integrated into prototype and production thermoplastic devices. The check valve consists of a thermoplastic planar spring and a soft elastomeric pad that act together to seal against fluid backflow. The valve's cracking pressure can be tuned by modifying the spring's planar geometry and thickness. Seal integrity is improved with the addition of a raised annular boss beneath the elastomeric pad. To demonstrate the valve's usefulness, we employ these valves to create a finger-operated on-chip reagent reservoir and a finger-actuated pneumatic pump. We also apply this check valve to passively seal a device to enable portable detection of RNA from West Nile virus in a laser-cut device.
Arboviruses (viruses spread by arthropod vectors like mosquitoes and ticks) represent a significant burden to public health and agriculture. In most cases, vector control is the only effective measure to stop the spread of these pathogens. We present a novel approach to field-based detection of mosquito-borne viruses, using a device called the "Smart Trap" which automates all steps of a sugarbased surveillance assay, providing daily reports from a network of bait stations placed in the field.
The recent Ebola crisis in West Africa highlights challenges associated with pathogen diagnostics in the developing world, particularly logistical challenges with sample transport, availability of resources, and skilled labor. We present innovations in assay chemistry, microfluidic consumables, and smart phone-based instrumentation to enable a new generation of portable diagnostic devices.