Publications

14 Results
Skip to search filters

Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance

Goldflam, Michael G.; Anderson, Evan M.; Fortune, Torben R.; Klem, John F.; Hawkins, Samuel D.; Davids, Paul D.; Campione, Salvatore; Pung, Aaron J.; Webster, Preston T.; Weiner, Phillip H.; Finnegan, Patrick S.; Wendt, Joel R.; Wood, Michael G.; Haines, Chris H.; Coon, Wesley T.; Olesberg, Jonathon T.; Shaner, Eric A.; Kadlec, Clark N.; Beechem, Thomas E.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Kim, Jin K.; Peters, D.W.

Abstract not provided.

Modeling shielded cables in Xyce based on transmission-line theory

2019 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2019 - Proceedings

Campione, Salvatore; Pung, Aaron J.; Warne, Larry K.; Langston, William L.; Mei, Ting M.

Electromagnetic shields are usually employed to protect cables and other devices; however, these are generally not perfect, and may permit external magnetic and electric fields to penetrate into the interior regions of the cable, inducing unwanted current and voltages. The aim of this paper is to verify a circuit model tool with our previously proposed analytical model [1] for evaluating currents and voltages induced in the inner conductor of braided-shield cables. This circuit model will enable coupling between electromagnetic and circuit simulations.

More Details

Enhancing absorption bandwidth through vertically oriented metamaterials

Applied Sciences (Switzerland)

Pung, Aaron J.; Goldflam, Michael G.; Burckel, David B.; Brener, Igal B.; Sinclair, Michael B.; Campione, Salvatore

Metamaterials research has developed perfect absorbers from microwave to optical frequencies, mainly featuring planar metamaterials, also referred to as metasurfaces. In this study, we investigated vertically oriented metamaterials, which make use of the entire three-dimensional space, as a new avenue to widen the spectral absorption band in the infrared regime between 20 and 40 THz. Vertically oriented metamaterials, such as those simulated in this work, can be experimentally realized through membrane projection lithography, which allows a single unit cell to be decorated with multiple resonators by exploiting the vertical dimension. In particular, we analyzed the cases of a unit cell containing a single vertical split-ring resonator (VSRR), a single planar split-ring resonator (PSRR), and both a VSRR and PSRR to explore intra-cell coupling between resonators. We show that the additional degrees of freedom enabled by placing multiple resonators in a unit cell lead to novel ways of achieving omnidirectional super absorption. Our results provide an innovative approach for controlling and designing engineered nanostructures.

More Details

Massively parallel frequency domain electromagnetic simulation codes

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Langston, William L.; Kotulski, J.D.; Coats, Rebecca S.; Jorgenson, Roy E.; Blake, S.A.; Campione, Salvatore; Pung, Aaron J.; Zinser, Brian

This paper provides an overview of the electromagnetic frequency domain simulation capabilities of the Electromagnetic Theory department at Sandia National Laboratories via a description of two of its codes. EIGER is a Method of Moments code for electromagnetic simulations, but it only runs on traditional CPUs, not on new architectures. Gemma is in development to replace EIGER and will run on many architectures, including CPUs, GPUs, and MICs, by leveraging the Kokkos library.

More Details

Parametric Analysis of Vertically Oriented Metamaterials for Wideband Omnidirectional Perfect Absorption

2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings

Pung, Aaron J.; Goldflam, Michael G.; Burckel, David B.; Brener, Igal B.; Sinclair, Michael B.; Campione, Salvatore

Metamaterials provide a means to tailor the spectral response of a surface. Given the periodic nature of the metamaterial, proper design of the unit cell requires intimate knowledge of the parameter space for each design variable. We present a detailed study of the parameter space surrounding vertical split-ring resonators and planar split-ring resonators, and demonstrate widening of the perfect absorption bandwidth based on the understanding of its parameter space.

More Details
14 Results
14 Results