Publications

31 Results
Skip to search filters

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert E.; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther F.; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan W.; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Journal of Micro/Nanopatterning, Materials and Metrology

Katzenmeyer, Aaron M.; Dmitrovic, Sanja; Baczewski, Andrew D.; Campbell, Quinn C.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, Scott W.; Ivie, Jeffrey A.; Campbell, DeAnna M.; Ward, Daniel R.; Scrymgeour, David S.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.

More Details

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

Phase-locked fiber interferometer with high frequency, low voltage fiber-stretcher and application to optical field reconstruction

Proceedings of SPIE - The International Society for Optical Engineering

Katzenmeyer, Aaron M.

Light carries a great deal of information in the form of amplitude, phase, and polarization, any or most powerfully all, of which may be exploited for the characterization of materials or development of novel technologies. However, extracting the full set of information carried by light becomes increasingly difficult as sample feature sizes shrink and the footprint and cost of detection schemes must decrease as well. Here, a fiber-based interferometric scheme is deployed to extract this information from optical systems which may be assessed three dimensionally down to the nanoscale and/or temporally up to the bandwidth of electronic data acquisition available. The setup utilizes a homemade fiber stretcher to achieve phase-locking of the reference arm and is compatible with heterodyning. More interestingly, a simplified and less expensive approach is demonstrated which employs the fiber stretcher for arbitrarily frequency up-converted (with respect to driving voltage frequency) phase modulation in addition to locking. This improves the detection system's size, weight, power, and cost requirements, eliminating the need for an acousto-optic modulator and reducing the drive power required by orders of magnitude. High performance is maintained as evidenced by imaging amplitude and phase (and inherently polarization state) in micro and nano optical systems such as lensed fibers and focusing waveguide grating couplers previously imaged only for intensity distribution.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Proceedings of SPIE - The International Society for Optical Engineering

Katzenmeyer, Aaron M.; Dmitrovic, S.; Baczewski, Andrew D.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, S.W.; Ivie, J.A.; Campbell, DeAnna M.; Ward, D.R.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with sub-nanometer precision, typically for quantum physics demonstrations, and to dope silicon past the solid-solubility limit, with potential applications in microelectronics and plasmonics. However, this process, which we call atomic precision advanced manufacturing (APAM), currently lacks the throughput required to develop sophisticated applications because there is no proven scalable hydrogen lithography pathway. Here, we demonstrate and characterize an APAM device workflow where STM lithography has been replaced with photolithography. An ultraviolet laser is shown to locally heat silicon controllably above the temperature required for hydrogen depassivation. STM images indicate a narrow range of laser energy density where hydrogen has been depassivated, and the surface remains well-ordered. A model for photothermal heating of silicon predicts a local temperature which is consistent with atomic-scale STM images of the photo-patterned regions. Finally, a simple device made by exposing photo-depassivated silicon to phosphine is found to have a carrier density and mobility similar to that produced by similar devices patterned by STM.

More Details

Kinetics and mechanism of metal-organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes

Chemical Science

Stavila, Vitalie S.; Volponi, Joanne V.; Katzenmeyer, Aaron M.; Dixon, Matthew C.; Allendorf, Mark D.

We describe a systematic investigation of the factors controlling step-by-step growth of the metal-organic framework (MOF) [Cu 3(btc) 2(H 2O) 3]·xH 2O (also known as HKUST-1), using quartz crystal microbalance (QCM) electrodes as an in situ probe of the reaction kinetics and mechanism. Electrodes coated with silica, alumina and gold functionalized with OH- and COOH-terminated self-assembled monolayers (SAMs) were employed to determine the effects of surface properties on nucleation. Deposition rates were measured using the high sensitivity available from QCM-D (D = dissipation) techniques to determine rate constants in the early stage of the process. Films were characterized using grazing incidence XRD, SEM, AFM, profilometry and reflection-absorption IR spectroscopy. The effects of reaction time, concentration, temperature and substrate on the deposition rates, film crystallinity and surface morphology were evaluated. The initial growth step, in which the surface is exposed to copper ions (in the form of an ethanolic solution of copper(ii) acetate) is fast and independent of temperature, after which all subsequent steps are thermally activated over the temperature range 22-62 °C. Using these data, we propose a kinetic model for the Cu 3(btc) 2 growth on surfaces that includes rate constants for the individual steps. The magnitude of the activation energies, in particular the large entropy decrease, suggests an associative reaction with a tight transition state. The measured activation energies for the step-by-step MOF growth are an order of magnitude lower than the value previously reported for bulk Cu 3(btc) 2 crystals. Finally, the results of this investigation demonstrate that the QCM method is a powerful tool for quantitative, in situ monitoring of MOF growth in real time. © 2012 The Royal Society of Chemistry.

More Details

LDRD final report : energy conversion using chromophore-functionalized carbon nanotubes

Leonard, Francois L.; Wong, Bryan M.; Krafcik, Karen L.; Zifer, Thomas Z.; Katzenmeyer, Aaron M.; Kane, Alexander K.

With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.

More Details
31 Results
31 Results