This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena. The experiments focus on providing data to better characterize the arc to improve the prediction of arc energy emitted during a HEAF event. An open box experiment allow for direct observation of the arc, which allows diagnostic instrumentation to record the phenomenological data needed for better characterization of the arc energy source term. The data collected supports characterization of the arc and arc jet, enclosure breach, material loss, and electrical properties. These results will be used to better characterizing the hazard for improvements in fire probabilistic risk assessment (PRA) realism. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA Labs. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 22, 2020 and September 18, 2020 on near-identical 51 cm (20 in) cube metal boxes suspended from a Unistrut support structure. The three-phase arcing fault was initiated at the ends of the conductors oriented vertically and located at the center of the box. Either aluminum or copper conductors were used for the conductors. The low-voltage experiments used 1 000 volts AC, while the medium-voltage experiments used 6 900 volts AC consistent with other recently completed experiments. Durations of the experiment ranged from 1 s to 5 s with fault currents ranging from 1 kA to 30 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. The experiments were documented with normal and high-speed videography, infrared imaging and photography.
Time multiplexed spectral images of burning aluminum particles from two experiments using a hyperspectral imaging system (HIS) coupled to a high speed video (HSV) camera were investigated. The first experiment looks at ignited aluminum particles generated by a welding torch that were continuously funneled into the imaging plane of the HISHSV system. The HIS was set to hop between two wavelengths at a rate of 300 frames per second (fps): 485.7 nm, the peak emission of aluminum monoxide, and 502.3nm, the bottom of the same emission peak. The second experiment images ignited AlO from the burn of an aluminized ammonium perchlorate solid propellant hoping between the wavelength of 486.3nm and 480.0nm at 2100 fps.
Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.
Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the working bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.
We describe the design of pixelated filter arrays for hyperspectral monitoring of CO2 and H2O absorption in the midwave infrared (centered at 4.25μm and 5.15μm, respectively) using resonant subwavelength gratings (RSGs), also called guided-mode resonant filters (GMRFs). For each gas, a hyperspectral filter array of very narrowband filters is designed that spans the absorption band on a single substrate. A pixelated geometry allows for direct registration of filter pixels to focal plane array (FPA) sensor pixels and for non-scanning data collection. The design process for narrowband, low-sideband reflective and transmissive filters within fabrication limitations will be discussed.
Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.
We investigate the advantages of employing a fiber faceplate in a snapshot polarimetry system. Our previous work at Sandia National Laboratories indicates that diffraction and propagation between the micropolarizer array, the micro-waveplate array, and the Focal Plane Array (FPA) degrade performance, as quantified by the extinction ratio1,2. Crosstalk between adjacent pixels due to diffraction increases uncertainty of the measured polarization states in a scene of interest. These issues are exacerbated in the long-wavelength regime and as FPA pixel dimensions decrease. One solution, since it minimizes propagation distance, is to construct the micropolarizer and micro-waveplate arrays on a single substrate surface and to place this combination on the FPA3. This solution is a significant fabrication challenge and decreases yield due to its serial assembly nature. An alternative solution that would improve yield is to fabricate the micropolarizer on top of a fiber faceplate, place the faceplate on the FPA with the micropolarizer facing away, then place the waveplate array on top of the micropolarizer. The optical field that passes through the plane of the microwaveplate array and the micropolarizer array is guided to the FPA plane, without suffering diffraction effects associated with free-space propagation. We will quantify the utility of these proposed configurations with predicted imaging polarimetric system extinction ratios.
We present simulations and measurements of a technology that can manipulate thermal angular and wavelength emission. This work is representative of Sandia National Laboratories' efforts to investigate advanced technologies that are not currently accessible for reasons such as risk, cost, or limited availability. The goal of this project is to demonstrate a passive thermal emission management surface that can tailor the direction of emission as well as the wavelength bands of emission. This new proposed technology enables thermal emission pattern management by structuring the surface. This structuring may be in either the lateral or depth dimension. A lateral structuring consists of a shallow grating on a metal surface. This air/metal interface allows photon/plasmon coupling, which has been shown to coherently and preferentially emit at certain wavelengths.
We developed techniques to design higher efficiency diffractive optical elements (DOEs) with large numerical apertures (NA) for quantum computing and quantum information processing. Large NA optics encompass large solid angles and thus have high collection efficiencies. Qubits in ion trap architectures are commonly addressed and read by lasers1. Large-scale ion-trap quantum computing2 will therefore require highly parallel optical interconnects. Qubit readout in these systems requires detecting fluorescence from the nearly isotropic radiation pattern of single ions, so efficient readout requires optical interconnects with high numerical aperture. Diffractive optical element fabrication is relatively mature and utilizes lithography to produce arrays compatible with large-scale ion-trap quantum computer architectures. The primary challenge of DOEs is the loss associated with diffraction efficiency. This is due to requirements for large deflection angles, which leads to extremely small feature sizes in the outer zone of the DOE. If the period of the diffractive is between λ (the free space wavelength) and 10λ, the element functions in the vector regime. DOEs in this regime, particularly between 1.5λ and 4λ, have significant coupling to unwanted diffractive orders, reducing the performance of the lens. Furthermore, the optimal depth of the zones with periods in the vector regime differs from the overall depth of the DOE. We will present results indicating the unique behaviors around the 1.5λ and 4λ periods and methods to improve the DOE performance.
The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15 {micro}m by 15 {micro}m that exceed by 7 times previously reported devices. The fabricated birefringent diffractive waveplates had a total variation of phase delay rms of 9.41 degrees with an average delay of 80.6 degrees across the MWIR spectral region. We found that diffraction effects change the requirement for separation between focal plane arrays (FPA) micropolarizer arrays and birefringent waveplates arrays, originally in the order of hundreds of microns (which are the typical substrate thickness) to a few microns or less. This new requirement leads us to propose new approaches to fabricate these devices.
Subwavelength diffractive features etched into a substrate lead to form birefringence that can be utilized to produce polarization sensitive elements such as waveplates. Using etched features allows for the development of pixilated devices to be used in conjunction with focal plane arrays in polarimetric imaging systems. Typically, the main drawback from using diffractive devices is their high sensitivity to wavelength. Taking advantage of the dispersion of the form birefringence, diffractive waveplates with good achromatic characteristics can be designed. We will report on diffractive waveplates designed for minimal phase retardation error across the 2-5 micron spectral regime. The required fabrication processes of the sub-wavelength feature sizes will be discussed as well as the achromatic performance and transmission efficiency of final devices. Previous work in this area has produced good results over a subset of this wavelength band, but designing for this extended band is particularly challenging. In addition, the effect of the finite size of the apertures of the pixilated devices is of particular interest since they are designed to be used in conjunction with a detector array. The influence of small aperture sizes will also be investigated.
We report here on an effort to design and fabricate a polarization splitter that utilizes form-birefringence to disperse an input beam as a function of polarization content as well as wavelength spectrum. Our approach is unique in the polarization beam splitting geometry and the potential for tailoring the polarized beams' phase fronts to correct aberrations or add focusing power. A first cut design could be realized with a chirped duty cycle grating at a single etch depth. However, this approach presents a considerable fabrication obstacle since etch depths are a strong function of feature size, or grating period. We fabricated a period of 1.0 micron form-birefringent component, with a nominal depth of 1.7 microns, in GaAs using a CAIBE system with a 2-inch ion beam source diameter. The gas flows, ion energy, and sample temperature were all optimized to yield the desired etch profile.