Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ$\cdot$cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 mΩ$\cdot$cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. In this work, these results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of <1×1015 cm–3 and a carefully designed four-zone junction termination extension.
In this project we endeavored to improve the state-of-the-art in UV lasers diodes. We made important advancements in several fronts from modeling, to epitaxial growth, to fabrication, and testing. Throughout the project it became clear that polarization doping would be able to help advance the state of laser diode design in terms of electrical performance, but the optical design would need to be investigated to ensure that a 2D guided mode would be supported. New capability in optical modeling using commercial software demonstrated that the new polarization doped structures would be viable. New capability in pulsed testing was established to reach the current and voltage required. Our fabricated devices had some parasitic electrical paths which hindered performance that we were ultimately unable to overcome in the project timeframe. We do believe that future projects will be able to leverage the advancements made under this project.
Potts, Alexander M.; Bajaj, Sanyam; Daughton, David R.; Allerman, A.A.; Armstrong, Andrew A.; Razzak, Towhidur; Sohel, Shahadat H.; Rajan, Siddharth
Ultrawide bandgap Al0.7Ga0.3N MESFETs with refractory Tungsten Schottky and Ohmic contacts are studied in 300-675 K environments. Variable-temperature dc electrical transport reveals large ON-state drain current densities for an AlGaN device: 209 mA/mm at 300 K and 156 mA/mm at 675 K in the ON-state (25% reduction). Drain and gate currents are only weakly temperature-dependent, suggesting potential for engineering temperature invariant operation. The ON-/ OFF-ratio is limited by OFF-state leakage through the gate, which is attributed to damage from sputter deposition. Future work using refractory metals with larger work functions that are deposited by electron beam deposition is proposed.
Understanding the impact of high-energy electron radiation on device characteristics remains critical for the expanding use of semiconductor electronics in space-borne applications and other radiation harsh environments. Here, we report on in situ measurements of high-energy electron radiation effects on the hole diffusion length in low threading dislocation density homoepitaxial bulk n-GaN Schottky diodes using electron beam induced current (EBIC) in high-voltage scanning electron microscopy mode. Despite the large interaction volume in this system, quantitative EBIC imaging is possible due to the sustained collimation of the incident electron beam. This approach enables direct measurement of electron radiation effects without having to thin the specimen. Using a combination of experimental EBIC measurements and Monte Carlo simulations of electron trajectories, we determine a hole diffusion length of 264 ± 11 nm for n-GaN. Irradiation with 200 kV electron beam with an accumulated dose of 24 × 1016 electrons cm−2 led to an approximate 35% decrease in the minority carrier diffusion length.
Advanced GaN power devices are promising for many applications in high power electronics but performance limitations due to material quality in etched-and-regrown junctions prevent their widespread use. Carrier diffusion length is a critical parameter that not only determines device performance but is also a diagnostic of material quality. Here we present the use of electron-beam induced current to measure carrier diffusion lengths in continuously grown and etched-and-regrown GaN pin diodes as models for interfaces in more complex devices. Variations in the quality of the etched-and-regrown junctions are observed and shown to be due to the degradation of the n-type material. We observe an etched-and-regrown junction with properties comparable to a continuously grown junction.
This study analyzes the ability of various processing techniques to reduce leakage current in vertical GaN MOS devices. Careful analysis is required to determine suitable gate dielectric materials in vertical GaN MOSFET devices since they are largely responsible for determination of threshold voltage, gate leakage reduction, and semiconductor/dielectric interface traps. SiO2, Al2 O3, and HfO2 films were deposited by Atomic Layer Deposition (ALD) and subjected to treatments nominally identical to those in a vertical GaN MOSFET fabrication sequence. This work determines mechanisms for reducing gate leakage by reduction of surface contaminants and interface traps using pre-deposition cleans, elevated temperature depositions, and post-deposition anneals. Breakdown measurements indicate that ALD Al2O3 is an ideal candidate for a MOSFET gate dielectric, with a breakdown electric field near 7.5 MV/cm with no high temperature annealing required to increase breakdown strength. SiO2 ALD films treated with a post deposition anneal at 850 °C for 30 minutes show significant reduction in leakage current while maintaining breakdown at 5.5 MV/cm. HfO2 films show breakdown nominally identical to annealed SiO2 films, but with significantly higher leakage. Additionally, HfO2 films show more sensitivity to high temperature annealing suggesting that more research into surface cleans is necessary to improving these films for MOSFET gate applications.
Ultra-wide-bandgap aluminum gallium nitride (AlGaN) possesses several material properties that make it attractive for use in a variety of applications. This chapter focuses on power switching and radio-frequency (RF) devices based on Al-rich AlGaN heterostructures. The relevant figures of merit for both power switching and RF devices are discussed as motivation for the use of AlGaN heterostructures in such applications. The key physical parameters impacting these figures of merit include critical electric field, channel mobility, channel carrier density, and carrier saturation velocity, and the factors influencing these and the trade-offs between them are discussed. Surveys of both power switching and RF devices are given and their performance is described including in special operating regimes such as at high temperatures. Challenges to be overcome, such as the formation of low-resistivity Ohmic contacts, are presented. Finally, an overview of processing-related challenges, especially related to surfaces and interfaces, concludes the chapter.
This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.
Etched-and-regrown GaN pn-diodes capable of high breakdown voltage (1610 V), low reverse current leakage (1 nA = 6 μ A /cm2 at 1250 V), excellent forward characteristics (ideality factor 1.6), and low specific on-resistance (1.1 m Ω.cm2) were realized by mitigating plasma etch-related defects at the regrown interface. Epitaxial n -GaN layers grown by metal-organic chemical vapor deposition on free-standing GaN substrates were etched using inductively coupled plasma etching (ICP), and we demonstrate that a slow reactive ion etch (RIE) prior to p -GaN regrowth dramatically increases diode electrical performance compared to wet chemical surface treatments. Etched-and-regrown diodes without a junction termination extension (JTE) were characterized to compare diode performance using the post-ICP RIE method with prior studies of other post-ICP treatments. Then, etched-and-regrown diodes using the post-ICP RIE etch steps prior to regrowth were fabricated with a multi-step JTE to demonstrate kV-class operation.