Publications

Publications / Journal Article

Zonal Machine Learning-Based Protection for Distribution Systems

Poudel, Binod P.; Bidram, Ali; Reno, Matthew J.; Summers, Adam

Adaptive protection is defined as a real-time system that can modify the protective actions according to the changes in the system condition. An adaptive protection system (APS) is conventionally coordinated through a central management system located at the distribution system substation. An APS depends significantly on the communication infrastructure to monitor the latest status of the electric power grid and send appropriate settings to all of the protection relays existing in the grid. This makes an APS highly vulnerable to communication system failures (e.g., broken communication links due to natural disasters as well as wide-range cyber-attacks). To this end, this paper presents the addition of local adaptive modular protection (LAMP) units to the protection system to guarantee its reliable operation under extreme events when the operation of the APS is compromised. LAMP units operate in parallel with the conventional APS. As a backup, if APS fails to operate because of an issue in the communication system, LAMP units can accommodate a reliable fault detection and location on behalf of the protection relay. The performance of the proposed APS is verified using IEEE 123 node test system.