Publications
Waveform optimization for resonantly driven MEMS switches electrostatically biased near pull-in
Siddiqui, Aleem M.; Nordquist, Christopher N.; Grine, Alejandro J.; Lepkowski, Stefan M.; Henry, M.D.; Eichenfield, Matthew S.; Griffin, Benjamin G.
Biasing a MEMS switch close to static-pull in reduces the modulation amplitude necessary to achieve resonant pull-in, but results in a highly nonlinear system. In this work, we present a new methodology that captures the essential dynamics and provides a prescription for achieving the optimal drive waveform which reduces the amplitude requirements of the modulation source. These findings are validated both experimentally and through numerical modeling.